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Commercial AI solutions provide analysts and managers with data-driven business intelligence for a wide

range of decisions, such as demand forecasting and pricing. However, human analysts may have their own

insights and experiences about the decision-making that is at odds with the algorithmic recommendation. In

view of such a conflict, we provide a general analytical framework to study the augmentation of algorithmic

decisions with human knowledge: the analyst uses the knowledge to set a guardrail by which the algorithmic

decision is clipped if the algorithmic output is out of bound and seems unreasonable. We study the conditions

under which the augmentation is beneficial relative to the raw algorithmic decision. We show that when the

algorithmic decision is asymptotically optimal with large data, the non-data-driven human guardrail usually

provides no benefit. However, we point out three common pitfalls of the algorithmic decision: (1) lack of

domain knowledge, such as the market competition, (2) model misspecification, and (3) data contamination.

In these cases, even with sufficient data, the augmentation from human knowledge can still improve the

performance of the algorithmic decision.

1. Introduction

The Russia-Ukraine war has sent a seismic wave to the energy market and brought soaring gas

prices under the spotlight. Ideally, the optimal retail fuel price at the pump needs to take into

account many factors, including the crude oil price, the transportation cost, the brand value, and

the local competition. Because of the complexity of the pricing problem, in practice, it is not

surprising that the station managers would rely on some heuristics or simple rules (such as a

constant markup over the cost) to set prices instead of using a sophisticated pricing algorithm.

This is no longer the case for many gas stations, especially those owned by a large corporation.

PDI Fuel Pricing1 sells software to gas station managers that helps them set fuel prices more intel-

ligently using data analytics and machine learning. It uses a wide range of data, including historical

prices and demand, as well as competitors’ prices and claims to “fine-tune your pricing strategy

1 https://www.pdisoftware.com/fuel-pricing-solutions/
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with live competitive insights allowing [managers] to react quickly to market conditions.” Need-

less to say, machine learning algorithms can significantly improve profitability over the heuristic

approach.

However, it is not hard to imagine scenarios when a human analyst or the station manager may

not be fully convinced by the price prescribed by the algorithm, especially when the algorithm is a

black box (typical for many machine learning algorithms) and the prescribed price deviates from

human intuition significantly. For example, when the algorithm recommends a price that is much

higher than what would have been charged by the station manager, should the algorithmic decision

be trusted over human knowledge? On the one hand, the algorithm takes much more quantitative

information as input than the human analyst, and the higher price could reflect the rising demand,

a pattern in the data missed by the human analyst. On the other hand, human knowledge may

have relied on simple rules such as matching the price of another station around the corner. Such

price-matching heuristics may have worked well in the past. When the decisions from the algorithm

and human knowledge are in conflict, it can be hard for the analyst to make a call.

The problem faced by the station manager in the motivating example is prevalent. Most business

owners have realized the importance of the AI revolution and are willing to invest in it to improve

business decision-making. However, as AI algorithms become increasingly sophisticated, many firms

have no choice but to outsource the standardized components in the decision-making process

to commercial AI solutions. These decisions, such as pricing and inventory management, have

historically been made through human instincts and experiences. When human knowledge and the

decision output by AI algorithms deviate significantly, firms face a similar dilemma to the station

manager.

In this paper, we provide a general analytical framework to study practical problems in which

humans and AI interact in the decision-making process. Motivated by the gas station example,

we consider an AI system prescribing a decision based on past data and some machine learning

algorithms. Based on the prescribed decision, the human analyst may set a guardrail using simple

rules from the accumulated knowledge, experiences, or expertise. More precisely, human knowledge

is translated to a cap or floor, or both of the decision. That is, if the algorithmic decision violates

the bounds, the human analyst may override it by clipping it to the imposed cap or floor. For

example, the algorithm may recommend a retail price of $5.10 per gallon. At the same time, human

knowledge indicates, “the price can’t be higher than $5.00 per gallon because the station around

the corner is only charging $4.80.” As a result, the human analyst may set the final price to $5.00.

Otherwise, if the recommended price is lower than $5.00, then the algorithmic decision is followed.

In this interaction, AI is the main force behind the decision-making, while human knowledge serves
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as an auxiliary, safeguarding the algorithmic decision from prescribing unreasonably high prices.

It is a fair representation of a considerable fraction of human-AI interaction in practice.

With the framework, we aim to answer the following research question: When does human

knowledge add value to AI decision-making? Our first result is negative: human knowledge does not

provide any benefit if (1) the algorithmic decision improves with more data, for example, when the

mean squared error with respect to the optimal decision is diminishing, and (2) human knowledge

is not improving with more data. This result is somewhat expected: The guardrail prescribed by

human knowledge can itself be treated as the pattern extrapolation of past data, albeit a simple

and heuristic one. If the algorithm can efficiently recognize and extrapolate the pattern better

than the human, as many machine learning algorithms do, then it is unnecessary to augment the

algorithmic decision with human knowledge under sufficient data.

The above result may sound intuitive, but it is derived in an ideal situation. While it may

be reasonable to assume that human knowledge does not improve constantly with more data, as

human brains are generally unable to recognize complex patterns hidden in a large dataset, there

are many caveats in applying commercial off-the-shelf AI systems to real-world applications as

those algorithms may fail to satisfy condition (1) above. In these cases, human knowledge can be

used to augment the algorithmic decision. In this study, we identify three such use cases within

our framework and argue that, in these cases, rhetorically, the gas station manager should not

completely delegate the pricing decision to the algorithm of PDI Fuel Pricing. The three cases

summarize the common pitfalls when making business decisions and trusting the algorithm blindly.

• When the firm is in a competitive market, and the algorithm fails to fully take into account

the competitors’ decision (due to incomplete data or algorithmic design), simple decision rules

based on human knowledge, such as price matching, can improve the algorithmic decision.

This is not an uncommon setting. For example, PDI Fuel Pricing may not have direct access

to the pricing data of other competing local stations unless they subscribe to some service

as well. We show that when a competitor sets a price near the Nash equilibrium, using the

algorithmic price and matching it to the competitor’s price when the algorithmic price is

higher can improve the algorithmic decision.

• The algorithm may be susceptible to model misspecification. In the pricing context, the algo-

rithm may mistakenly treat the demand function as a linear function and recommend the

optimal price based on the misspecified linear demand model. On the other hand, the human

analyst may simply observe which price generates the highest profit empirically in the past

data without fitting or optimizing a model. This heuristic turns out to be quite robust to

model misspecification. We show that human knowledge when used to safeguard the algorithm,
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can help mitigate the model misspecification and improve the profitability of the algorithmic

decision.

• When the data fed into the algorithm are contaminated, possibly due to the reporting or

measurement error, then the relative insensitivity of the human knowledge to specific data

points turns out to be a robust mechanism. Not surprisingly, the combination of human

knowledge and the algorithmic decision can prevent the latter from being misguided by the

contaminated data. We provide an analytical condition that characterizes the contamination

level for human knowledge to prevail.

In all three cases, instead of an abstract AI system, we materialize the algorithmic decision and

study linear regression, which allows us to concretely analyze the trade-off of safeguarding the

regression output using simple rules. Linear regression is widely used and is representative of a

more complex machine learning algorithm. Such treatment allows us to provide technical conditions

under which augmentation by human knowledge can improve the algorithmic decision.

This study contributes to the growing literature on human-AI collaboration. In some applica-

tions, it has been shown that AI lacks crucial human strengths such as domain knowledge and

common-sense reasoning (Holstein and Aleven 2021, Lake et al. 2017, Miller 2019), which motivates

the collaboration between AI and human experts on subjects including chess (Case 2018, Das and

Chernova 2020), healthcare (Dai and Singh 2021, Irvin et al. 2019, Patel et al. 2019), criminal

justice (Grgić-Hlača et al. 2019, Kleinberg et al. 2018), education (Cheng et al. 2019, Smith et al.

2012), and public services (Binns et al. 2018, Chouldechova et al. 2018). This study is motivated

by business problems, and the human-AI interaction is uniquely defined by the context. Below we

review the literature closely related to this study.

2. Related Literature

This research is broadly related to two streams of literature: those papers providing conceptual or

theoretical frameworks for human-AI collaboration and empirical papers documenting real-world

interactions between AI and human analysts. In the first stream, recent literature in computer

science aims at the optimal integration of human and AI decisions (Bansal et al. 2021, 2019,

Donahue et al. 2022, Gao et al. 2021, Keswani et al. 2021, Madras et al. 2018, Mozannar and Sontag

2020, Raghu et al. 2019, Rastogi et al. 2022, Wilder et al. 2020). On the one hand, Madras et al.

(2018) propose a learning-to-defer framework in which the AI can choose to make decision by its

own or just pass the task to the downstream human expert. The expert has information unavailable

to AI and may make better decisions. Follow-up papers extend the framework to more complex

settings, such as multiple experts (Keswani et al. 2021), bandit feedback (Gao et al. 2021), joint

optimization of the prediction algorithm and pass function (Mozannar and Sontag 2020, Wilder
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et al. 2020). On the other hand, Donahue et al. (2022), Rastogi et al. (2022) consider a weighted

average aggregation of human and AI decisions and show conditions for human-AI complementarity

in which the aggregated decision outperforms both individual decisions. Recently, Grand-Clément

and Pauphilet (2022) show that in the setting of sequential decision-making, the AI algorithm

should be trained differently when a human analyst is involved. Motivated by business applications,

our paper differs from this stream of works as we study a particular (not necessarily optimal) way

to integrate the algorithmic and human decisions tailored to the application. In the motivating

example, the manager does not have access to the internal structure of the algorithm and cannot

design a meta-algorithm to optimally instill her own knowledge into the algorithm.

Some recent studies in Operations Management analyze the human-AI interaction in a theoretical

framework (Agrawal et al. 2018, 2019, Boyaci et al. 2020, Dai and Singh 2021, de Véricourt and

Gurkan 2022, Ibrahim et al. 2021). They focus on modeling the impact of AI-based predictions

on the human decision-making process. Boyaci et al. (2020) study the impact of AI predictions

on human decision errors and the cognitive effort humans put into their decisions. The human

has the cognitive flexibility to attend information from diverse sources but under limited cognitive

capacity, while the AI only processes incomplete information but with great accuracy and efficiency.

Through a rational inattention model, the authors show that AI prediction improves the overall

accuracy of human decisions and reduces cognitive effort. Agrawal et al. (2018) consider the human

analyst aiming to maximize the utility which depends on their decision and the uncertain state.

The state can be predicted accurately by the AI algorithm. But the human needs to learn the

utility function. The authors show that AI prediction generally complements the human effort

but could be a substitute in some cases. de Véricourt and Gurkan (2022) consider the human-

AI interactions in a sequential setting in which the analyst gradually learns the accuracy of the

AI algorithm through a sequence of tasks. Since the analyst can override AI and never actively

explores the AI accuracy, the analyst may never know whether AI outperforms herself at the end

of the day. The authors provide explanations for the coexistence of AI and humans, even if one

actually outperforms the other. Dai and Singh (2021) use a theoretical framework to analyze a

physician’s decision with regard to whether to use AI when prescribing a treatment. They find that

physicians may intentionally avoid using AI, even when AI can help mitigate clinical uncertainty

because doing so increases their liability when adverse patient outcomes occur. Our paper differs

from these papers in modeling the human decision-making process. In our model, we assume the

human analyst aims to directly safeguard the AI decisions using intuition and expertise. We focus

on whether the integration improves the raw AI output.

Empirical evidence shows that human knowledge can still improve AI systems, even though the
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latter have access to big data and computational resources (Campbell and Frei 2011, Karlinsky-

Shichor and Netzer 2019, Kesavan and Kushwaha 2020, Liu et al. 2022, Phillips et al. 2015, Sun

et al. 2022, Van Donselaar et al. 2010). For example, in the context of inventory replenishment,

Van Donselaar et al. (2010) find that store managers often modify the algorithmic recommendation

from an automated replenishment system. Kesavan and Kushwaha (2020) use the data from a field

experiment to investigate the merchant’s modification of the advice from a data-driven central-

planning system. They find that the merchant’s modification reduces the overall profitability but

improves the profit for growth-stage products whose historical data are limited. Liu et al. (2022)

conduct a field experiment to compare the inventory replenishment strategies of human buyers

and AI algorithms. They find the algorithm outperforms human buyers in terms of reducing out-

of-stocks rates and inventory rates. The most related empirical works to our study are Fogliato

et al. (2022), Ibrahim et al. (2021). Ibrahim et al. (2021) show how to exploit the human domain

knowledge to improve the AI predictions for surgery duration. Particularly, they suggest inputting

the human adjustment (so-called private information adjustment in the paper), instead of the

human direct forecast, into the prediction algorithm. Their work conveys a message similar to ours:

even the human predictions are less accurate than AI, they can still help boost AI performance.

Fogliato et al. (2022) investigate human-AI collaboration in the context of child maltreatment

hotline screening. Due to the technical glitch caused by incorrect input, the AI may incorrectly

predict the risk score in some cases. They find that human analysts are more likely to override AI

recommendations when AI makes a mistake. The work shows that humans can augment the algo-

rithmic decision when the algorithm exhibits defects in real-world applications. Our work provides

a theoretical framework to complement the empirical evidence provided in the above papers and

analyzes the situations when the human augmentation of algorithmic outputs is beneficial.

Another stream of the related empirical literature is “judgmental adjustment of statistical fore-

casts” (see Arvan et al. 2019, Lawrence et al. 2006 for a review). These studies consider the demand

forecast problem in supply chain management. The human analyst is allowed to adjust the forecasts

generated by an algorithm. The adjustment can improve the accuracy when the algorithmic fore-

cast is deficient or the human has important domain knowledge that is unavailable to AI (Lawrence

et al. 2006). Several empirical studies aim to investigate the effect of the direction and magnitude

of the adjustment on accuracy (Baker 2021, Davydenko and Fildes 2013, Fildes et al. 2009). How-

ever, the benefit of such adjustments may be highly context-dependent (Khosrowabadi et al. 2022).

Although we consider a general decision-making problem, our work can also contribute to this

literature by providing an analytical framework to characterize when the adjustment adds value

to the algorithmic forecast.
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Finally, we notice some recent works focusing on how to design user-friendly AI algorithms which

the human analyst can easily understand and follow. Bastani et al. (2019) construct extracted

decision trees to interpret complex, black-box AI models and summarize their reasoning process.

Applied to the diabetes risk prediction problem, the proposed algorithm produces more accurate

interpretations than baseline algorithms. Bastani et al. (2021) propose a reinforcement-learning

algorithm for inferring interpretable tips to help workers improve their performance in sequential

decision-making tasks. Through a virtual kitchen-management game, they show that the algorithm

improves workers’ performance. Dietvorst et al. (2018) find that giving the human analyst some

control over the AI output can reduce human’s aversion to algorithms.

3. An Analytical Framework for Human-Safeguarded Algorithmic
Decisions

In the retail fuel example, the gas station manager intends to set prices to maximize the profit.

The objective can be viewed more generally as the minimization of the loss in comparison to the

optimal price. In this section, we consider a general problem that an analyst intends to minimize a

loss function l(·) : R→R, which measures the loss due to the deviation from the optimal decision

x∗, e.g., the profit loss due to making suboptimal operations or pricing decisions. The loss function

may represent the operational cost or the expected negative profit. The analyst may not know the

form of the loss function exactly and seeks the help from AI algorithms. We do not impose any

structure of the loss function but make the following mild assumptions.

Assumption 1. Suppose the loss function l(·) satisfies: (i) l(x) is nonnegative; (ii) l(x) is qua-

siconvex with minimizer x∗.

Part (i) of Assumption 1 is without loss of generality as the loss function can be shifted up by

a constant of |l(x∗)|. We first give two examples that will serve as running examples throughout

the rest of the paper. The two examples are intended to give the context of the loss function and

demonstrate the generality of Assumption 1.

Example 1 (Predictive Analytics: Prediction). If a firm intends to forecast a quantity,

for example, the demand in the next season, then the firm’s problem can be cast as a prediction

problem: The goal is to minimize the loss function l(x) = (x−x∗)2, where x∗ is the actual value of

the quantity of interest.

Example 2 (Prescriptive Analytics: Pricing). Sophisticated algorithms such as online

learning has been widely used in pricing (see, e.g., den Boer and Keskin 2022, Keskin et al. 2022).

When a new product is launched to the market, the retailer needs to set its price x. The goal of

the retailer is to maximize the profit, which is the product of the profit margin x− c, where c is the

marginal cost and demand, i.e., π(x) = (x− c)f(x). Denote x∗ by the optimal price. The retailer
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knows the marginal cost, but does not know the demand function f(x) nor the optimal price. The

loss function can be written as l(x) = π(x∗)−π(x). If the profit function π(·) is unimodal, then the

loss function satisfies Assumption 1.

We next introduce the algorithmic decision and human knowledge into the framework.

Algorithmic decision. To accommodate a wide range of algorithms, we simply use a generic

random variable Xa to represent the decision. The randomness may come from the randomness in

the historical data or the randomization of the algorithm itself. The performance of the algorithmic

decision is thus evaluated by E[l(Xa)].

Human knowledge. We focus on human knowledge in the form of a guardrail. That is, the

human analyst forms a belief with an upper bound on the optimal decision, based on her domain

knowledge and experiences. We use a random variable Xh to denote the upper bound. In Example 2,

Xh could be interpreted as a price cap manually imposed by the retailer. Note that unlike the

algorithmic decision, Xh is usually not data-dependent and tends to be stable, although we allow it

to be random and correlated with Xa. We use the upper bound as a form of domain knowledge due

to two reasons. First, it is common for human brains to perceive uncertainty in terms of intervals

and worst-case scenarios. The notion is closely related to confidence intervals in statistics that have

shaped how human’s belief is formed. Second, compared to point estimators, the notion we propose

is more flexible and allows for different confidence levels.

To keep the framework general, we do not specify howXa andXh are generated. ForXa, it may be

output by a machine learning algorithm deployed by the analyst or a black-box commercial software

as mentioned in the fuel-pricing example in the introduction. The complexity of the algorithm

may vary, e.g., linear regression versus neural networks. The random variable Xa can fully capture

the wide range of scenarios. For Xh, although itself may not represent a sensible decision, it may

serve as a safeguard distilled from the accumulated knowledge of the human analyst. Depending

on the conservativeness and the risk preference of the analyst, Xh may have different values. For

instance, in Example 1, Xh may roughly be the upper confidence bound of the targeted quantity

with various confidence levels.

Human-safeguarded algorithmic decision. We consider a simple yet pervasive approach

to integrate the algorithmic decision and human knowledge. The human analyst safeguards the

algorithmic decision by using

X̂ ,min{Xa,Xh}. (1)

This is a rather natural step: the analyst follows the algorithmic decision if the upper bound is not

violated; otherwise, the upper bound is used. Consider the example mentioned in the introduction

(a special case of Example 2), Xa is the price output by PDI Fuel Pricing; Xh is the price cap
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imposed by the station manager. The safeguarded algorithmic decision takes the minimum of the

two, guaranteeing that the price output by the algorithm does not exceed the price cap. This type

of augmentation also captures the interaction between autonomous drones and vehicles and their

human overseers (Berger 2022), in which the human overseer needs to step in and override the

algorithm when the system encounters an unexpected situation.

Note that neither the algorithm nor the human analyst has access to the optimal decision x∗. If

Xh ≥ x∗ almost surely, i.e., the upper bound provided by the human belief is indeed always larger

than the true optimal decision, then we can show that the safeguarded decision X̂ outperforms the

raw algorithmic decision Xa, i.e., E[l(X̂)]≤E[l(Xa)]. To see this, note that

E[l(X̂)]−E[l(Xa)] =

∫ ∞
x∗

∫ ∞
xh

(l(xh)− l(xa))f(xa, xh)dxadxh ≤ 0,

where f(·, ·) represents the joint PDF and the inequality follows from l(Xa)≥ l(Xh) for Xa ≥Xh ≥

x∗.

The condition Xh ≥ x∗, however, cannot be guaranteed, because the human analyst does not have

precise information about x∗. On one hand, when an unnecessary guardrail Xh <x
∗ is imposed, the

performance of Xa is hurt for Xa ∈ [Xh, x
∗]. In other words, if the suggested Xh by the analyst is too

aggressive, then Xh <x
∗ is likely to happen and the human belief ends up clipping the algorithmic

output Xa for too many possible scenarios, even though the latter may accurately achieve the true

optimal decision x∗. Such an unnecessary guardrail inevitably introduces a significant downward

bias and may cause the safeguarded algorithmic decision to be worse. The faulty human knowledge

leads to an additional cost to the AI decision. On the other hand, one may argue that Xh can

be a sufficiently large number, so that Xh ≥ x∗ always holds. However, in this case, the human

knowledge is almost useless in the process, as it does not provide a meaningful upper bound. The

improvement by the human augmentation, if any, is going to be minimal. This is the result of an

overly conservative human belief. The observation highlights the impact of aggressive/conservative

human augmentation. In the next proposition, we quantify the benefit of human augmentation.

Proposition 1 (Conditions for beneficial human augmentation). Suppose Assump-

tion 1 holds.

(i) We can quantify the benefit of human augmentation by

E[l(Xa)]−E[l(X̂)] =E[(l(Xa)− l(Xh))I(Xh ≤Xa)]. (2)

(ii) A sufficient condition for beneficial augmentation E[l(X̂)]≤E[l(Xa)] is

E[l(Xa)I(Xa >x
∗,Xh ≤ x∗)]≥E[l(Xh)I(Xh ≤ x∗)]. (3)
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(iii) A necessary condition for beneficial augmentation E[l(X̂)]≤E[l(Xa)] is

E[l(Xa)I(Xa ≥ x∗)]≥E[l(Xh)I(Xh ≤ x∗,Xa >x
∗)]. (4)

Next, we interpret the result of Proposition 1. In (2), the benefit of human augmentation depends

on the performance of the algorithmic decision l(Xa) and human knowledge l(Xh) on the event

that the guardrail takes effect, i.e., I(Xh ≤ Xa). This is intuitive because the analyst counts on

their knowledge to improve the algorithmic decision when it looks “unreasonable.” Conditions (3)

and (4) are easier to interpret when Xa and Xh are independent, although we allow Xa and Xh to

be dependent. For example, suppose the human knowledge Xh is data-independent. Then, (3) and

(4) are reduced to, respectively,

E[l(Xa)I(Xa >x
∗)]≥E[l(Xh)I(Xh ≤ x∗)]/P(Xh ≤ x∗) (5)

E[l(Xa)I(Xa ≥ x∗)]≥E[l(Xh)I(Xh ≤ x∗)]P(Xa >x
∗). (6)

The left-hand sides of (5) and (6) measure the performance of the algorithmic decision. In partic-

ular, (5) says that it is beneficial to safeguard the algorithmic decision when the right-hand side

E[l(Xh)|Xh ≤ x∗] is small enough. In other words, the conditional expected loss does not explode

when the human makes mistakes and imposes an overly aggressive bound (Xh ≤ x∗). Moreover, the

necessary condition (6), which is weaker than (5), implies not to safeguard the algorithmic decision

when the expected loss (E[l(Xh)I(Xh ≤ x∗)]) incurred by human belief is over a certain amount.

It is easier to check whether the human augmentation is beneficial using (5) and (6), than directly

comparing (2) with zero. This is because (2) depends on the joint distribution of (Xh,Xa) and the

values of l(Xh) and l(Xa). However, in practice, the analyst may have collected the data in the

past decision epochs during which one of the algorithmic and the human decisions has been applied

and their realized losses have been observed. It may not be the case that the realized l(Xh) and

l(Xa) can be observed simultaneously. While the conditions (5) and (6) only require the marginal

distributions of Xh and Xa to be observed, which allows the analyst to evaluate whether human

augmentation is effective in a data-driven manner.

Furthermore, we show the tightness of the sufficient condition (5) relative to the necessary

condition (6). The right-hand sides of both (5) and (6) has the common term E[l(Xh)I(Xh ≤

x∗)]. The residual multipliers 1/P(Xh ≤ x∗) and P(Xa ≥ x∗) in (5) and (6) tend to be constant

even with increasing data sizes because in the former, human knowledge usually does not scale

with big data, while in the latter, for unbiased algorithmic decisions, P(Xa ≥ x∗) ≈ 1/2. So the

sufficient and necessary conditions tend to only differ by a constant factor. In the next example, we

show that the sufficient condition in Proposition 1 cannot be improved even when the likelihood

P(Xh ≤ x∗) diminishes, and the right-hand side of (5) cannot be relaxed to a constant multiplying

E[l(Xh)I(Xh ≤ x∗)]. As a result, the condition tends to be tight.
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Example 3 (Tightness of the sufficient condition (5)). Suppose l(x) = (x−x∗)2, Xa ∼

N(x∗, σ2), and Xh satisfies

P(Xh = x) =

{
1− ε if x=∞,

3ε
(x−x∗)4

if x≤ x∗− 1.
(7)

Then for any a ≥ 1/4, if ε ∈ (0, σ2/(6a)), x∗ < 1, and σ2 < 3/2, we have E[l(Xa)I(Xa ≥ x∗)] ≥

aE[l(Xh)I(Xh ≤ x∗)], but E[l(X̂)]>E[l(Xa)].

Example 3 shows the sufficient condition in Proposition 1 no longer holds if P(Xh ≤ x∗) in (5) is

replaced by a constant. To better understand (5) and (6), we show the conditions for Example 1

(predictive analytics: prediction).

Example 4 (Conditions for beneficial augmentation for the prediction problem).

Consider historical samples Z1, . . . ,Zn ∼N(x∗, σ2). The AI algorithm estimates x∗ by the sample

mean Xa = 1
n

∑n

i=1Zi, which follows the distribution N(x∗, σ2/n). By Proposition 1, if the upper

bound derived from the human belief satisfies E[(Xh−x∗)2|Xh ≤ x∗]≤ σ2/(2n), then the augmen-

tation improves the algorithmic decision. On the other hand, if E[(Xh − x∗)2I(Xh ≤ x∗)] ≥ σ2/n,

then the augmentation is not beneficial.

Proposition 1 provides us with an analytical framework to analyze the benefit of augmentation.

Based on the framework, we can show that there is an optimal level of safeguard when the human

belief is deterministic.

Corollary 1 (Optimal safeguard). Suppose Xh = xh is a constant. Then the benefit of aug-

mentation E[l(Xa)]−E[l(X̂)] is unimodal in xh, i.e., it increases when xh ≤ x∗ and decreases when

xh ≥ x∗.

Corollary 1 holds under the condition that the human belief is deterministic. In this case, although

the human analyst imposes an upper bound, it is the best to equate it to the true optimal decision

x∗, i.e., a buffer is not necessary. Of course, the corollary cannot provide a guidance for the human

analyst to select the optimal bound, because x∗ is not accessible. It does show the trade-off between

conservative/aggressive guardrails.

Symmetrically, we can derive similar results when the guardrail derived from the human domain

knowledge takes the form of a lower bound.

Corollary 2 (Safeguarded by a lower bound). Consider X̂ = max{Xa,Xh}. We have (i)

E[l(Xa)]−E[l(X̂)] =E[(l(Xa)−l(Xh))I(Xh ≥Xa)]. (ii) A sufficient condition for E[l(X̂)]≤E[l(Xa)]

is

E[l(Xa)I(Xa <x
∗,Xh ≥ x∗)]≥E[l(Xh)I(Xh ≥ x∗)]. (8)

And (iii) a necessary condition for E[l(X̂)]≤E[l(Xa)] is

E[l(Xa)I(Xa ≤ x∗)]≥E[l(Xh)I(Xh ≥ x∗,Xa <x
∗)]. (9)
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Next we extend the results by two-sided bounds. In particular, suppose the human analyst

imposes both lower and upper bounds on the algorithmic decision. For example, in the motivating

example in the introduction, the station manager may propose a range for the retail price: the

markup has to be between $0.10/L and $0.30/L, regardless of the recommendation of the algorithm.

Mathematically, the human belief is translated to an interval [X l
h,X

u
h ]. The algorithmic decision Xa

is then projected onto the interval, i.e., X̂ = min{max{Xa,X
l
h},Xu

h}. Proposition 2 characterizes

the benefit of such augmentation.

Proposition 2 (Benefit of safeguarding using a two-sided bound). Suppose Assump-

tion 1 holds.

(i) The benefit of the human safeguard by a two-sided bound is

E[l(Xa)]−E[l(X̂)] =E[(l(Xa)− l(X l
h))I(Xa ≤X l

h)] +E[(l(Xa)− l(Xu
h ))I(Xa ≥Xu

h )].

(ii) A sufficient condition for E[l(X̂)]≤E[l(Xa)] is

E[l(Xa)I(Xa ≥ x∗,Xu
h ≤ x∗)] +E[l(Xa)I(Xa ≤ x∗,X l

h ≥ x∗)]

≥E[l(Xu
h )I(Xu

h ≤ x∗)] +E[l(X l
h)I(X l

h ≥ x∗)]. (10)

(iii) A necessary condition for E[l(X̂)]≤E[l(Xa)] is

E[l(Xa)]≥E[l(Xu
h )I(Xu

h ≤ x∗ ≤Xa)] +E[l(X l
h)I(Xa ≤ x∗ ≤X l

h)]. (11)

If the bounds satisfy P(X l
h ≤ x∗ ≤Xu

h ) = 1, i.e., they always enclose the actual optimal decision, then

the safeguard always improves the algorithmic decision. When this condition fails, (10) and (11)

imply conditions to check whether to safeguard the algorithmic decision. Intuitively, the safeguard

is beneficial when the loss incurred by the interval not covering x∗ is relatively small compared to

the loss of the algorithmic decision.

One can see that Proposition 2 reduces to Proposition 1 and Corollary 2 when X l
h = −∞ or

Xu
h =∞. We point out that the conditions for two-side bounds are weaker than the conditions for

the one-sided bound. If Xu
h satisfies (3) and X l

h satisfies (8), then [X l
h,X

u
h ] satisfies (10). But the

reverse is not true. So the two-side conditions allow the human to make more mistakes in one side

as long as the loss can be compensated by the other.

3.1. Covariate Information

So far, we have considered a simple model that the environment does not provide any covariate

information at the specific decision epoch. However, in many data-driven decision-making problems,

the analyst may observe additional covariate information W and hence the optimal decision x∗
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can depend on such covariate information. Upon observing the covariates, the algorithm outputs a

decision Xa(W ). In the prediction problem (Example 1), one can think of W as the new input to

the prediction algorithm such as weather conditions. In the pricing problem (Example 2), W may

represent the available side information about the market to assist the choice of the optimal price.

For example, PDI Fuel Pricing would take into account the crude oil price, which is a major cost

component, to determine the retail gas price. In this case, the crude oil price is changing over time

and can be considered as part of the covariate information.

After receiving the algorithmic recommendation, the human analyst comes up with a bound

[X l
h(W ),Xu

h (W )] to safeguard it. That is, X̂(W ) = min{max{X(W ),X l
h(W )},Xu

h (W )}. Note that

in many cases the human domain knowledge may not be sophisticated enough to adapt to a

specific covariate W . In such cases, X l
h and Xu

h do not depend on W , which is also covered by our

framework.

When the covariate information is available, the loss function l(x,w) depends on both the decision

and the covariate. We impose the following assumption, in parallel to Assumption 1.

Assumption 2. Assume the loss function l(x,w) satisfies the following conditions.

(i) For any decision x∈R and any covariate w ∈Rd, l(x,w)≥ 0.

(ii) For any covariate w ∈Rd, l(·,w) is quasi-convex with minimizer x∗(w).

Next, we characterize the benefit of human augmentation in the presence of covariate information

by generalizing Proposition 1. Note that Xh, Xa, and x∗ all depend on (and are correlated with)

W . We omit the dependence for the readability.

Proposition 3 (Benefit of human augmentation with covariate information).

Suppose Assumption 2 holds.

(i) The benefit of human augmentation is

E[l(Xa,W )]−E[l(X̂,W )] =E[(l(Xa,W )− l(X l
h,W ))I(Xa ≤X l

h)]

+E[(l(Xa,W )− l(Xu
h ,W ))I(Xa ≥Xu

h )]. (12)

(ii) A sufficient condition for E[l(X̂,W )]≤E[l(Xa,W )] is

E[l(Xa,W )I(Xa ≥ x∗,Xu
h ≤ x∗)] +E[l(Xa,W )I(Xa ≤ x∗,X l

h ≥ x∗)]

≥E[l(Xu
h ,W )I(Xu

h ≤ x∗)] +E[l(X l
h,W )I(X l

h ≥ x∗)]. (13)

(iii) A necessary condition for E[l(X̂,W )]≤E[l(Xa,W )] is

E[l(Xa,W )]≥E[l(Xu
h ,W )I(Xu

h ≤ x∗,Xa ≥ x∗)] +E[l(X l
h,W )I(X l

h ≥ x∗,Xa ≤ x∗)]. (14)
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When W is a constant, Proposition 3 reduces to the special case of Proposition 2. As expected, the

conditions in Proposition 3 are more involved, although they follow a similar form to Proposition 2.

To explain the intuition, we adopt the following example.

Example 5 (Linear regression). Linear regression is a special case of the prediction problem

(Example 1) with covariates. Suppose the loss function is l(x,w) = (x−w>β)2 for some unknown

coefficient β. As a result, the optimal decision is x∗(W ) =W>β. Using the least squares estimator

β̂, the algorithmic output is Xa(W ) =W>β̂. In the necessary condition (14), the left-hand side is

the mean-squared error (MSE) of the least-squares estimation, which typically converges to zero at

the rate of 1/n, where n is the sample size. In this case, for the human augmentation to outperform

the algorithm, the right-hand side of (14) should diminish at the same or a faster rate. It is only

possible if the bounds derived from human belief, X l
h and Xu

h , have diminishing MSEs l(X l
h,W )

and l(Xu
h ,W ), or they almost always sandwich the optimal x∗, i.e., X l

h ≤ x∗ ≤ Xu
h . Both of the

above two requirements set impractically high bars for the human domain knowledge.

From the example, we see that AI incurs diminishing loss as it gathers more data. In a data-rich

environment, it appears that the human domain knowledge is not likely to improve AI. However,

Example 5 does not reflect one of the major reasons why human domain knowledge may be helpful:

algorithms designed for general purposes sometimes ignore practical factors in the training dataset,

such as contamination, model misspecification, and data errors. In the following sections, we provide

examples to show that even if AI has a large amount of data, the human knowledge can still play

an important role and contribute to the decision-making.

4. Three Use Cases on Beneficial Human Augmentation

In this section, we provide three concrete use cases when the safeguard derived from human knowl-

edge can indeed improve algorithmic decisions even with large data, despite the potential limitation

of human knowledge illustrated in Example 5. We first provide a summary of the three use cases

as follows:

• In Section 4.1, we consider a pricing problem (Example 2) under competition. We show that

when the algorithm fails to take into account the competitive environment the pricing prob-

lem resides in, simple human augmentation like price matching can improve the algorithmic

decision.

• In Section 4.2, we consider a pricing problem when the algorithm misspecifies the demand

function. We show that using empirical observations (in particular, setting a price interval

using the historical price range that contains the highest profit in the past) can improve the

performance of the algorithm.
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• In Section 4.3, we show that in prediction problems (Example 1), the human knowledge can

serve as a robust mechanism to limit the damage due to data contamination and thus improve

the algorithm’s performance.

4.1. Pricing Algorithm under Competition

In this section, consider the pricing problem of a focal firm when there is a competitor in the

market. The loss function of the firm under price p, given the price of the competitor p′, is the

negative revenue under a linear demand function:

l(p) =E[−pd(p, p′)] :=−p(α−βp+ γp′).

We assume β > γ > 0, which is standard in the literature and means that the firm’s demand is

more sensitive to its own price than its competitor’s price. The best response of the firm, given the

competitor’s price, can be easily solved as:

p∗ = arg min
p

l(p) =
α+ γp′

2β
.

However, this best response requires the knowledge of α,β, γ, which are typically unavailable to

the firm. Next we specify how an algorithm may recommend a price based on the historical data.

Algorithmic price. The algorithm attempts to learn the demand function from the historical

data. However, the algorithm may not be aware of the presence of the competitor (see, e.g., Cooper

et al. 2015). Consider the gas station example in the introduction. To provide the competitors’

prices as inputs to PDI Fuel Pricing, the station manager needs to check the prices of nearby gas

stations periodically. Even though this is convenient, the resolution of the competitors’ prices may

be lower than that of the historical prices of the focal station, which have constantly been recorded

in its system. To accommodate this realistic setting with data unavailability, we assume that the

algorithm attempts to learn a monopolistic demand function

d̂(p) = α̂− β̂p. (15)

This setting of learning a monopolistic demand function under competition has also been studied

in Cooper et al. (2015) and Hansen et al. (2021).

The algorithm has access to the historical prices p1, . . . , pn and realized demand d1, . . . , dn. We

assume that the demand is generated by

dt = α−βpt + γp′t + εt, (16)

for some independent and identically distributed (i.i.d.) noise εt and t = 1, . . . , n. The algorithm

uses the ordinary least squares (OLS) to estimate α̂ and β̂. Finally, the algorithm recommends a
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price maximizing the estimated revenue (16), i.e., pa = α̂/2β̂. Note that the historical demand and

the algorithmic price pa depend on the unobserved competitor’s prices p′1, . . . , p
′
n. To analyze pa,

we assume that

Assumption 3. The prices (pn, p
′
n) are i.i.d. for n = 1,2, . . . . Moreover, E[pn] = E[p′n] = µ,

Var(pn) = Var(p′n) = σ2 and the correlation of (pn, p
′
n) is ρ∈ [0,1].

Assumption 3 can be rather mild if we consider a symmetric duopoly and the past samples are

all independent. The condition ρ ≥ 0 implies that the prices of competing firms are positively

correlated. The next result characterizes the asymptotic behavior of pa.

Lemma 1. Suppose Assumption 3 holds. The algorithmic price pa converges in probability to

plim
n→∞

pa =
α+ γµ(1− ρ)

2(β− γρ)
. (17)

To understand the algorithmic price with large data (n→∞), note that the symmetric Nash

equilibrium price satisfies pNE = arg maxp{pd(p, pNE)} = α/(2β − γ). If ρ = 1, i.e., the historical

prices of the firm and the competitor are perfectly correlated, then pa = α/2(β− γ) converges to

the collusive price that maximizes the joint revenue of both parties. Clearly such collusive price is

higher than pNE. On the other hand, if ρ= 0 and µ= pNE, i.e., the historical prices of the firm and

the competitor are uncorrelated and centered around the Nash equilibrium, then pa converges to

pNE.

Human safeguard — price matching. We consider price matching, a common competitive

strategy for analysts. In particular, after receiving the price recommended by the algorithm, the

analyst may intentionally check the competitor’s price. If the competitor’s price is lower than

algorithmic price, then the analyst lowers the algorithmic price to match the competitor’s price.

That is, the human-safeguarded price is p̂= min{pa, p′}. Such an augmentation strategy is highly

relevant for the human analyst: (i) it does not depend on the historical data or the unknown

parameters, (ii) is easy to process and explain to human managers, (iii) it takes into account the

competitive environment, and (iv) can be used to complement the algorithmic price. Moreover,

since price matching specifies a lower bound, it also fits into the general framework in Section 3. In

the next theorem, we characterize the condition under which the human augmentation improves

the algorithmic price.

Theorem 1. Suppose Assumption 3 holds and the algorithmic price is given in (17). Assume

µ≥ pNE. If the competitor’s price satisfies

p′ ≥ pL :=
αβ− 2αγρ−βγ(1− ρ)µ

2(β− ργ)(β− γ)
∈ (0, pNE),

then the revenue of the safeguarded price is higher than that of the algorithmic price, i.e., p̂d(p̂, p′)≥

pad(pa, p
′). In addition, if p′ ∈ (pL, pa), then the revenue improvement is strictly positive.
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To understand this theorem, first note that the assumption µ≥ pNE is mild. It merely states that

the historical prices are a convex combination of the equilibrium price and the collusive price, since

the latter is higher. The expression for pL is complicated, but we can show that pL ≤ pNE. As long

as the competitor’s price is not significantly lower than the equilibrium price, the augmentation by

price matching improves the algorithmic decision. Price matching is particularly useful when the

competitor undercuts the algorithmic price (p′ < pa) while not setting a price much lower than the

equilibrium price (p′ > pL).

4.2. Misspecified Algorithms

Consider the pricing problem in Example 2 in a monopolistic market. The demand function is

assumed to be a general non-increasing function f(p), and the unit cost of the product is c. As a

result, the loss function faced by the analyst is l(p) =−(p− c)f(p). The optimal price p∗ satisfies

p∗ = arg minp l(p). Since the demand function f is unknown to the analyst, she sets up price

experiments to collect data and uses AI algorithms to learn the demand function.

Price experiments. In practice, the analyst cannot charge prices arbitrarily. In fear of consumer

backlash, the price experimentation usually takes the form of promotions, such as $10-off coupons.

The analyst has done price experimentation at a grid of prices and observed realized demand at

those price points. In particular, we consider the following uniform price grid between [c, p̄]:

pj = c+ j
p̄− c
n

, j = 0,1, . . . , n, (18)

where p̄ represents the nominal price without any promotion. For each price on the grid, we suppose

K noisy demand observations have been collected:

f(pj) + εjk, ∀k= 1,2, . . . ,K,

where εjk is an independent σ-sub-Gausssian noise. For example, the firm may have set the price

pj for K hours and recorded the hourly demand, whose mean is f(pj) with noise εjk.

Algorithmic decision. In order to find the optimal price p∗, the algorithm needs to learn the

demand function f(p). However, because the price experiments are only conducted on a grid, the

algorithm typically postulates a model for the demand function and estimate the model parameters.

One of the most common models is the linear demand function. That is,

f̂(p) = α̂− β̂p, (19)

where α̂ and β̂ guarantees that f̂ is the best linear fit to the points {(pj, f(pj)+εjk)} for j = 0, . . . , n

and k= 1, . . . ,K in terms of the `2 error:

(α̂, β̂) = arg min
α,β

{
n∑
j=0

K∑
k=1

(f(pj) + εjk−α+βpj)
2

}
. (20)
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Figure 1 The left figure shows the misspecified linear model by the algorithm. The actual demand function is

f(p) = 10exp(−p/3) with c= 1, p̄= 10, n= 10, and K = 3. The OLS estimator is α̂= 6.309, β̂ = −0.694.

The right figure shows the human analyst identifying the price that earns the highest empirical profit.

Eventually, the algorithm outputs an optimized price pa based on the estimated demand function

f̂(p), i.e., pa = arg maxp(p− c)f̂(p) = α̂/2β̂+ c/2.

Although linear demand models have been shown in Cohen et al. (2021) to perform well when

the model is misspecified, in our setup, we do not claim that the linear model is necessarily the

best algorithmic choice in this scenario. In fact, given the data points {(pj, f(pj) + εjk)}, there

may be other choices such as a linear interpolation that can fit the demand function better. Our

main goal is to demonstrate a salient feature of a wide range of algorithms based on parametric

statistical models—the chosen model may be misspecified and hence the resulting algorithm may

be built on a shaky foundation. That is, the relationship between price and demand may not

be accurately captured by the postulated class of models. In this case, even with sufficient data,

the misspecification cannot be fully remedied. As we shall see in the left of Figure 1, such a

misspecification can be clearly pronounced for the linear model.

Human knowledge. How can human knowledge help with the misspecified algorithm? Due to

the limitation of the human brain, the human analyst typically does not form a model to process

the historical data, and it would be impossible to judge whether the algorithmic price suffers from

misspecification. We consider a rather natural and straightforward approach: since the analyst

observes the noisy demand on the price grid, it first uses the average to form an estimate of the

demand at each price as
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f̃(pj) := f(pj) +
1

K

K∑
k=1

εjk. (21)

Using this estimate, the optimal price on the grid that generates the highest empirical profit

(pj − c)f̃(pj) can be easily calculated. Suppose j∗ is the index of one of the optimal prices on the

grid:

(pj∗ − c)f̃(pj∗)≥ (pj − c)f̃(pj) ∀j = 0, . . . , n.

Taking the demand function in Figure 1 as an example, the human analyst observes the noisy

demand on the price grid {1,2, . . . ,10}. Then, she chooses the price point pj∗ = 5 that gives the

highest empirical profit. In this example, the chosen price pj∗ = 5 does not equal to the true

optimal price p∗ = 4, but the neighborhood [pj∗−1, pj∗+1] = [4,6] includes p∗. It is easy to see the

complementary effects of human knowledge and the algorithm in this example. The optimal price

from the human knowledge is empirically validated without any statistical model. However, while

the algorithm may suffer from misspecification, it has two strengths unmatched by the human

analyst. First, the algorithm aggregates all (n+1)K demand observations while the human analyst

takes the average of K demand observations locally. It is well-known that more samples improve

the statistical prediction power. Second, the human analyst does not attempt to specify a model

to extrapolate the demand function. As a result, only the prices on the grid can be selected, and

a discretization error is always born by the price picked by the analyst. For example, if the prices

{p̄− 20, p̄− 10, p̄} have been experimented, i.e., two types of promotions, $20 off and $10 off, in

addition to the nominal price p̄, have been offered in the past, then pj∗ can be suboptimal if the

actual optimal price is p̄ − 15. In this case, the algorithm learns a model that interpolates the

price gaps on the grid and remedies the discretization error. The following result characterizes the

performances of the two approaches, which allow us to further understand the benefit of human

augmentation to the algorithm.

Proposition 4. Assume that the loss function l(p) is strongly convex with parameter λ (or

equivalently, the profit function is λ-concave), i.e.,

l(p)≤ l(p′)− l′(p′)(p− p′)− λ
2

(p− p′)2, ∀p, p′ ∈ [c, p̄].

We then have

(i) [Algorithmic decision] Let p∗a denote the optimal price for the misspecified linear demand.

Given n and K, we have

P(|pa− p∗a| ≥ δ)≤ 4exp(−bnK), (22)

where b is a constant independent of n and K.
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(ii) [Human knowledge] The probability of the true optimal price not falling into the neighborhood

of human’s estimated price pj∗ satisfies

P (p∗ /∈ [pj∗−1, pj∗+1])≤ 2(n+ 1)exp

(
−Kλ

2(p̄− c)4

32σ2p̄2n4

)
. (23)

Note that for large samples (K→∞ or n→∞), the algorithmic decision does not converge to the

true optimal price p∗. Instead, it converges to the optimal price for the misspecified linear demand.

For the human knowledge, without misspecification, the price neighborhood [pj∗−1, pj∗+1] on the

grid containing pj∗ will eventually include the true optimal price as K→∞. However, compared

to the algorithmic decision, the human’s error probability can be significantly inflated, which even

increases in the number n of price points, reflecting a lack of data efficiency, while the algorithm’s

error probability decreases in n.

Augmentation by safeguarding. Because of the weaknesses of the finite-sample results in

Proposition 4 (i.e., the convergence to the wrong target in (22) by the algorithm and inefficient

sample use in (23) by the human), the analyst may decide to integrate both approaches. Based on

pj∗ , the human analyst imposes a guardrail [pj∗−1, pj∗+1] as in Proposition 2. In other words, the

human analyst uses the two neighboring prices of pj∗ on the grid to form an interval to regulate

the algorithmic output. As a result, the safeguarded algorithmic price is

p̂= max{min{pa, pj∗+1}, pj∗−1}.

The following result characterizes the condition under which such an augmentation is beneficial.

Theorem 2. Assume the profit function (p− c)f(p) is unimodal. The augmentation improves

the algorithmic price, i.e., (p̂− c)f(p̂)≥ (pa− c)f(pa), if the true optimal price p∗ ∈ [pj∗−1, pj∗+1].

In particular, the latter condition always holds when K→∞.

Theorem 2 requires the profit function to be unimodal, which is satisfied by most demand functions

f(·) (see, e.g., Ziya et al. 2004). As a result, the regime that sees the most benefit of human

augmentation is when n is fixed but K →∞, i.e., the price experimentation is conducted on

a few prices for an extended period. This is arguably a common scenario in retailing, due to

the infeasibility of frequent price changes. In this case, augmenting the algorithmic price using

the bounds distilled from the human knowledge, the augmented price p̂ enjoys the benefits of

both worlds. Intuitively, when p∗ falls in the interval [pj∗−1, pj∗+1] and the algorithmic price is

outside the interval, the human safeguard always pulls the algorithmic price toward the actual

optimal price and improves the algorithmic recommendation due to the unimodality of the profit

function. On the other hand, when the algorithmic price falls into the same interval, indicating

the discretization error may exceed the misspecification error (imagine [pj∗−1, pj∗+1] being a wide
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interval), the guardrail does not take effect and the analyst follows the algorithmic decision. This

result confirms the complementary effects of algorithms and human knowledge, in particular, the

robustness of simple heuristics against model misspecification.

We next study two commonly used demand function forms of f(·) and characterize the conditions

under which the algorithmic price falls outside the interval [pj∗−1, pj∗+1], i.e., when it is strictly

improved by the human augmentation. We consider K→∞ in both examples.

Example 6 (Isoelastic demand). Consider the demand function f(p) = bp−a where a > 1

and b > 0. It can be shown that the profit function is unimodal, and the optimal price is p∗ = ac
a−1

.

We can show that when the nominal price

p̄ >
a
a−1
− 1

2
− 2

n
1
3
− 2

n

c, (24)

the algorithmic price pa is outside the interval [pj∗−1, pj∗+1] and thus the human augmentation

strictly improves the algorithm. For example, if a= 2, n= 10, then (24) is equivalent to p̄ > 2.25c,

i.e., when the nominal price is more than 125% higher than the production cost.

Example 7 (Exponential demand). Consider the demand function f(p) = be−ap where a >

0. It can be shown that the optimal price is p∗ = 1/a+ c. We can show that when

p̄ >
1
a

+ ( 1
2
− 2

n
)c

1
3
− 2

n

, (25)

the human augmentation strictly improves the algorithm. For example, if a= 2, n= 10, then (25)

is translated to p̄ > 3.75 + 2.25c.

From both examples, we can see that the misspecification error by the algorithm grows larger

relative to the discretization error by the guardrail and hence human’s augmentation becomes more

beneficial, when p̄ is much larger than c, i.e., the interval for the price experiments is wider.

4.3. Data Contamination

In this section, we consider the case when the data can be contaminated, due to outliers, reporting

errors, etc. While the possibly contaminated data is fed into algorithms, the error in data also prop-

agates to the output decision. For this reason, Fogliato et al. (2022) advocate humans-in-the-loop,

to mitigate the data contamination. Human analysts are less susceptible to data contamination

because the human brain cannot process large data sets, which turns out to be a blessing rather

than a curse in this case as it makes the human knowledge robust to minor data contamination.

Next we provide a formal analysis of human augmentation to the algorithms for this use case.

The application we consider is the linear regression problem in Example 5. Without contamina-

tion, the historical data {(Xi,Wi)}ni=1 is generated by Xi =W>
i β+εi for some unknown coefficients

β and noise εi. We consider two contamination mechanisms that affect a fraction of samples: con-

tamination in response (Bhatia et al. 2017) and covariates (Loh and Wainwright 2011, McWilliams
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et al. 2014). Before we provide the formal introduction to the mechanisms, we first explain how

the algorithm and human knowledge play a role in the process.

Not able to tell whether the data is contaminated, the algorithm simply applies the OLS

estimator to the data2, as stated in Example 5. For a new covariate W , we denote the pre-

diction from the OLS estimator as Xa(W ). For the human analyst, we consider a generic two-

sided bounded range [X l
h,X

u
h ]. As shown in Section 3, the corresponding safeguarded decision is

X̂(W ) = max{min{Xa(W ),Xu
h},X l

h} for the two-sided guardrail. Also recall that the loss function

is l(x,w) = (x−w>β)2.

4.3.1. Contamination in Response We first consider the contamination in the response of

the samples. In particular, the observed response Xi is not generated from W>
i β+ εi, but

Xi =W>
i β+Bi + εi (26)

for some random variable Bi. Here Bi controls for the degree of contamination: with a high proba-

bility, it is zero and the sample is not contaminated. When Bi 6= 0, the response of the sample, Xi,

deviates from the uncontaminated observation W>
i β+ εi. Note that B is not to be confused with

ε, which has a zero mean. We assume E[B] to be nonzero which means that the contamination has

a systematic influence on the estimation.

Contamination in the response is studied in the computer science community, see, e.g., Wright

et al. (2009) and Nguyen and Tran (2013) for applications to image recognition. For management

applications, this type of contamination may occur due to various reasons: the historical response

Xi may be subject to reporting errors, or may be censored in certain periods and some ad hoc

imputation methods are used so that the missing data are replaced by their estimated values. Our

contamination model can capture both cases.

Not surprisingly, when the historical data is contaminated, the algorithmic output that uses

OLS is biased. More precisely, given the i.i.d. historical samples {(Xi,Wi)}Ni=1 that are generated

by (26) and a new covariate w, suppose Xa(w) is the OLS estimator applied to w. We have:

Lemma 2. Assume the covariance matrix Σ =E[WW>] is positive definite. Then the OLS pre-

dictor Xa(w) = w>β̂ converges to w>β + E[B] in probability for any w as N →∞. Therefore,

l(Xa(w),w) =E[B]2.

2 We acknowledge that there are statistical tests to identify outliers and robust estimators to mitigate data contami-
nation. We do not consider them in the model because they usually require some information about the contamination
such as whether the data is contaminated or the contamination mechanism, while in practice, the algorithm is agnostic
to such knowledge.
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In other words, even with a sufficiently large dataset, the bias caused by the contamination persists.

To analyze how the human augmentation may improve the algorithmic result, we consider a simple

form of contamination. Let B = b > 0 with probability p and B = 0 with probability 1−p. Therefore,

the contamination always leads to upward bias (the downward bias can be formulated similarly),

and the parameter b represents the magnitude of the contamination and p represents its propensity.

To adjust for the upward bias, the human analyst can impose an upper bound Xu
h and cap the

output of the algorithm and lead to the safeguarded prediction as X̂(W ) = min{Xa(W ),Xu
h}.

However, because Xu
h is not data-driven, the safeguard runs the risk of overcorrection. The following

proposition provides such a condition.

Proposition 5. Assume the domain of W is a closed and bounded set W ∈ Rd, and we take

N →∞. If Xu
h satisfies

Xu
h ≥max

w∈W
{w>β}− pb, (27)

then, for all w ∈W, we have l(X̂(w),w)≤ l(Xa(w),w).

To interpret the result, on the one hand, in the extreme case of Xu
h ≥ maxw∈W{w>β}+ pb, we

always have Xu
h ≥Xa and X̂ =Xa. The bound of Xu

h is too conservative, and the safeguard provides

no benefit. On the other hand, one can show that the loss function for the algorithmic prediction

is simply l(Xa(w),w) = p2b2 due to the contamination. If Xu
h < maxw∈W{w>β} − pb, then there

exists w such that l(X̂(w),w)> p2b2 because the upper bound imposed by the human analyst is

too aggressive and outweighs the bias introduced by the contamination. Clearly, condition (27) is

easier to satisfy when the contamination gets more severe due to an increased value of p or b.

When the contamination can lead to a bias of either direction, i.e., it is possible that B > 0 or

B < 0, it is safer for the human analyst to set up both bounds X l
h and Xu

h . That is, once the algo-

rithmic prediction Xa(w) is given, the safeguarded decision is X̂(w) = max{min{Xa(w),Xu
h},X l

h}.

Generalizing Proposition 5, we have:

Theorem 3. Suppose the domain of W is a closed and bounded setW ∈Rd, and we take N →∞.

If the lower and upper bounds X l
h,X

u
h satisfy

Xu
h ≥max

w∈W
{w>β}−

∣∣E[B]
∣∣, X l

h ≤ min
w∈W
{w>β}+

∣∣E[B]
∣∣, (28)

then for all w ∈W, we have l(X̂(w),w)≤ l(Xa(w),w) and E[l(X̂(W ),W )]≤E[l(Xa(W ),W )].

Note that when the absolute bias (
∣∣E[B]

∣∣) is large, the human augmentation of imposing upper

and lower bounds tends to be helpful, regardless of the sign of the bias. For example, even when

B > 0, i.e., the bias is always upward, Theorem 3 states that imposing a lower bound X l
h is more

likely to be beneficial when the bias is large because (28) is more likely to be satisfied. To see the

intuition, as the contamination becomes more severe, the algorithmic decision is subject to a larger

bias. Hence, it is easier for the human augmentation to outperform the raw algorithmic decision.
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4.3.2. Contamination in Covariates In this section, we consider the covariates in the data,

Wi, which can be contaminated. This type of contamination is sometimes referred to as the error-

in-variable (Loh and Wainwright 2011), which occurs in voting, surveys, and sensor networks. In

business applications, there may exist measurement errors in the historical samples of the covariate.

For example, when a firm is running a survey to learn consumer sentiment, the design of the survey

may lead to biased measurement of the quantity of interest.

We consider the following contamination model: the observed covariate is generated by Wi =

Zi+Ui, where Zi is the actual covariate, and Ui ∈Rd is an error that contaminates the observation,

independent of Zi. The response is generated from Xi = Z>i β + εi. For a new covariate W0, the

algorithm outputs Xa(W0) using the OLS estimator from the data {(Xi,Wi}∞i=1. (We consider

infinite samples in this analysis.)

What differentiates the contamination in covariates from Section 4.3.1 is that even the new

covariate W0 itself may be contaminated. Therefore, the human safeguard can serve for two pur-

poses: it helps to control the contamination in the training data and curtail the potential error

in the new covariate based on which the prediction is given. We impose the following technical

assumption.

Assumption 4. The matrix Σ1 :=E[ZZ>] is positive definite and Σ2 :=E[UU>] is positive semi-

definite.

Next, we show that the contamination usually leads to an inconsistent OLS estimator.

Lemma 3. Suppose Assumption 4 holds. The OLS estimator β̂ for (26) converges to

(I − (Σ1 + Σ2)−1Σ2)β in probability. Furthermore, β̂ converges to β in probability if and only if

Σ2β = 0.

From Lemma 3, we know that the OLS estimator β̂ does not converge to the true parameter β unless

β is in the null space of Σ2. As a result, the predicted response Xa(w) = w>β̂ given w is usually

biased. Note that in this case the bias can be translated to the contamination in response as in

Section 4.3.1, and the conditions in Theorem 3 can be similarly applied. In this section, we instead

focus on a different angle: even when Σ2β = 0 holds and β̂ converges to β, the algorithm is still not

bias-free. This is because the new covariate W0 may be contaminated. The actual prediction should

be Z>0 β = (W0−U0)>β, while under contamination, even with β̂ = β, the prediction is W>
0 β.

We consider the two-sided guardrail [Xu
h ,X

l
h] for the human augmentation. Note that in this case,

the loss functions for the algorithmic and safeguarded outcomes are l(Xa(W ),Z) and l(X̂(W ),Z),

respectively, because the loss only depends on the actual covariate Z, not the observed but poten-

tially contaminated W . We impose the following technical assumption.
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Assumption 5. Assume the domain of Z is a closed and bounded set Z ∈Rd. Assume Σ2β = 0

and there exist constants b, p∈ (0,0.5) such that

P
(
U>β ≥ b

)
≥ p, P

(
U>β ≤−b

)
≥ p. (29)

The compactness of the covariate Z is similar to the assumption in Theorem 3. Equation (29)

states that the contamination U>β is not concentrated at zero, which would make the application

of the two-sided range more likely to be beneficial. Next we state our main result.

Theorem 4. Suppose Assumptions 4 and 5 hold. If the upper and lower bounds Xu
h ,X

l
h satisfy

X l
h ≤min

z∈Z
{z>β}+

√
p

1− p
b, Xu

h ≥max
z∈Z
{z>β}−

√
p

1− p
b, (30)

then we have E[l(X̂(W ),Z)]≤E[l(Xa(W ),Z)].

Comparing to Theorem 3, it is worth pointing out that although the contamination mechanisms

differ, the conditions for beneficial human augmentation are surprisingly similar. In particular,

when b or p is larger, i.e., the magnitude of the contamination increases, there is more room for

human augmentation to be helpful (as conditions (30) are more likely to hold).

5. Conclusion

Motivated by a consulting project on retail fuel pricing, we propose a framework to study the

human-AI interaction in which an algorithm first recommends a decision to the human analyst,

then the analyst can augment it based on domain knowledge and experience. As far as we know,

this is the first study to investigate this type of interaction. With the framework, we investigate

when human knowledge adds value to algorithmic decision-making. We demonstrate three common

and practical situations in which human knowledge may play a critical role in harnessing and

correcting algorithmic decisions, even with large data.

We conclude by discussing potential future directions. First, we may consider more sophisticated

yet realistic human augmentation. For example, AI is known to suffer from out-of-distribution issues

when the algorithmic decision learned from the training data does not provide much value, and

for these instances, human knowledge is particularly useful in correcting. It is desirable to extend

our framework and incorporate simple rules to identify such instances and override the algorithmic

decision. Second, another important reason for humans to intervene is the consideration for fairness

or ethical issues associated with the algorithmic decision. It is a fruitful direction to extend our

framework by incorporating these considerations as rules of thumb to guardrail algorithmic outputs.

Lastly, in some applications, the adoption choice between the algorithm and the human knowledge

needs to be made before the computation of algorithmic decisions because it may incur significant

waiting if human correction is conducted after observing the algorithmic decisions. In this case,

the human analyst needs to design and commit to a simple rule based on the observed covariate.

Our framework may be extended to study this kind of human-AI interaction.
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Online Appendix to
“Algorithmic Decision-Making Augmented by Human

Knowledge”

A. Proofs in Section 3

Proof of Proposition 1. To prove (i), we first write down the expression for E[l(X̂)],

E[l(X̂)] =

∫ +∞

−∞

∫ +∞

−∞
l (min(xa, xh))f(xa, xh)dxa dxh

=

∫ +∞

−∞

(∫ xh

−∞
l(xa)f(xa, xh)dxa +

∫ ∞
xh

l(xh)f(xa, xh)dxa

)
dxh,

where f(xa, xh) denotes the joint probability density function of Xa,Xh. The last equality follows

from separating the integral in Xa by Xh ≤Xa and Xh >Xa. Then, we have

E[l(Xa)]−E[l(X̂)] =

∫ ∞
−∞

∫ ∞
xh

(l(xa)− l(xh))f(xa, xh)dxa dxh (31)

=E[(l(Xa)− l(Xh)) I(Xh ≤Xa)],

which completes the proof of (i).

To prove (ii), we separate the integral in (31) by Xh ≤ x∗ and Xh >x
∗:

E[l(Xa)]−E[l(X̂)] =

∫ x∗

−∞

∫ ∞
xh

(l(xa)− l(xh))f(xa, xh)dxa dxh

+

∫ ∞
x∗

∫ ∞
xh

(l(xa)− l(xh))f(xa, xh)dxa dxh. (32)

For the first term in (32), we have∫ x∗

−∞

∫ ∞
xh

(l(xa)− l(xh))f(xa, xh)dxa dxh

(a)
=

∫ ∞
−∞

∫ min{x∗,xa}

−∞
(l(xa)− l(xh))f(xa, xh)dxh dxa

(b)
=

∫ x∗

−∞

∫ xa

−∞
(l(xa)− l(xh))f(xa, xh)dxh dxa +

∫ ∞
x∗

∫ x∗

−∞
(l(xa)− l(xh))f(xa, xh)dxh dxa

=E[(l(Xa)− l(Xh)) I(Xa ≤ x∗,Xh ≤Xa)] +E[(l(Xa)− l(Xh)) I(Xa >x
∗,Xh ≤ x∗)]

=E[(l(Xa)− l(Xh)) I(Xh ≤Xa ≤ x∗)] +E[(l(Xa)− l(Xh)) I(Xh ≤ x∗ <Xa)]., (33)

where (a) follows from changing the order of integration, and (b) follows from separating the integral

by Xa ≤ x∗ and Xa >x
∗.

For the second term in (32), we have∫ ∞
x∗

∫ ∞
xh

(l(xa)− l(xh))f(xa, xh)dxa dxh
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(a)
=

∫ ∞
x∗

∫ xa

x∗
(l(xa)− l(xh))f(xa, xh)dxh dxa

=E[(l(Xa)− l(Xh))I(Xa >x
∗, x∗ <Xh ≤Xa)]

=E[(l(Xa)− l(Xh))I(x∗ <Xh ≤Xa)], (34)

where (a) follows from changing the order of integration. Plugging (33) and (34) into (32), we have

(32) =E[(l(Xa)− l(Xh)) I(Xh ≤Xa ≤ x∗)] +E[(l(Xa)− l(Xh)) I(Xh ≤ x∗ <Xa)]

+E[(l(Xa)− l(Xh))I(x∗ <Xh ≤Xa)] (35)

=E[(l(Xa)− l(x∗)) I(Xh ≤Xa ≤ x∗)] +E[(l(x∗)− l(Xh)) I(Xh ≤Xa ≤ x∗)]

+E[(l(Xa)− l(x∗)) I(Xh ≤ x∗ <Xa)] +E[(l(x∗)− l(Xh)) I(Xh ≤ x∗ <Xa)]

+E[(l(Xa)− l(Xh))I(x∗ <Xh ≤Xa)], (36)

where in the last equality, we separate l(Xa) − l(Xh) into l(Xa) − l(x∗) and l(x∗) − l(Xh). By

Assumption 1 (ii), we have l(·)≥ l(x∗) and l(x1)≥ l(x2) for x1 ≥ x2 ≥ x∗. Thus, we have

E[(l(Xa)− l(x∗)) I(Xh ≤Xa ≤ x∗)]≥ 0, (37)

E[(l(Xa)− l(Xh)) I(x∗ <Xh ≤Xa)]≥ 0. (38)

Furthermore, since l(x∗)≤ l(·) and I(Xh ≤Xa ≤ x∗)≤ I(Xa ≤ x∗,Xh ≤ x∗), we have

E[(l(x∗)− l(Xh)) I(Xh ≤Xa ≤ x∗)]≥E[(l(x∗)− l(Xh)) I(Xa ≤ x∗,Xh ≤ x∗)], (39)

By (37), (38), the first and last term in (36) can be lower-bounded by zero, and the second term

in (36) has the lower bound in (39). Thus, plugging (37), (39) and (38) into (36), we have

(36)≥E[(l(x∗)− l(Xh)) I(Xa ≤ x∗,Xh ≤ x∗)] +E[(l(Xa)− l(x∗)) I(Xh ≤ x∗ <Xa)]

+E[(l(x∗)− l(Xh)) I(Xh ≤ x∗ <Xa)]

(a)
= E[(l(Xa)− l(x∗))I(Xh ≤ x∗ <Xa)] +E[(l(x∗)− l(Xh))I(Xh ≤ x∗)]

=E[(l(Xa)− l(x∗))I(Xh ≤ x∗ <Xa)]−E[(l(Xh)− l(x∗))I(Xh ≤ x∗)]
(b)
= E[l(Xa)I(Xh ≤ x∗ <Xa)]−E[l(Xh)I(Xh ≤ x∗)] + l(x∗)P(Xa ≤ x∗,Xh ≤ x∗)

≥E[l(Xa)I(Xh ≤ x∗ <Xa)]−E[l(Xh)I(Xh ≤ x∗)], (40)

where (a) holds by I(Xa ≤ x∗,Xh ≤ x∗) + I(Xh ≤ x∗ < Xa) = I(Xh ≤ x∗), (b) holds by I(Xh ≤

x∗)− I(Xh ≤ x∗ <Xa) = I(Xa ≤ x∗,Xh ≤ x∗) and (c) follows from l(x∗)≥ 0 due to Assumption 1

(i). Thus, if (40)≥ 0, we have (32)≥ 0 and E[l(X̂)]≤E[l(Xa)], which completes the proof of (ii).

To prove (iii), note that

(35) =E[(l(Xa)− l(Xh)) I(Xh ≤Xa ≤ x∗)] +E[(l(Xa)− l(Xh)) I(Xh ≤ x∗ <Xa)]
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+E[(l(Xa)− l(x∗))I(x∗ <Xh ≤Xa)] +E[(l(x∗)− l(Xh))I(x∗ <Xh ≤Xa)] (41)

By Assumption 1 (ii), we have

E[(l(Xa)− l(Xh))I(Xh ≤Xa ≤ x∗)]≤ 0, (42)

E[(l(x∗)− l(Xh))I(x∗ <Xh ≤Xa)]≤ 0. (43)

Plugging (42) and (43) into (41), the first and last term in (41) are upper bounded by zero. And

we have

(36)≤E[(l(Xa)− l(Xh))I(Xh ≤ x∗ <Xa)] +E[(l(Xa)− l(x∗))I(x∗ <Xh ≤Xa)]

(a)
= E[(l(Xa)− l(x∗) + l(x∗)− l(Xh)) I(Xh ≤ x∗ <Xa)] +E[(l(Xa)− l(x∗))I(x∗ <Xh ≤Xa)]
(b)

≤ E[(l(Xa)− l(x∗))I(Xa ≥ x∗)]−E[(l(Xh)− l(x∗))I(Xh ≤ x∗ <Xa)]

(c)
= E[l(Xa)I(Xa ≥ x∗)]−E[l(Xh)I(Xh ≤ x∗ <Xa)]− l(x∗)P((Xa = x∗)∩ (Xh >x

∗,Xa >x
∗))

(d)
= E[l(Xa)I(Xa ≥ x∗)]−E[l(Xh)I(Xh ≤ x∗ <Xa)], (44)

where (a) holds by separating l(Xa)− l(Xh) into l(Xa)− l(x∗) + l(x∗)− l(Xh), (b) follows from

(l(Xa)− l(x∗)) I(Xh ≤ x∗ <Xa) + (l(Xa)− l(x∗))I(x∗ <Xh ≤Xa) ≤ (l(Xa)− l(x∗))I(Xa ≥ x∗), (c)

follows from I(Xa ≥ x∗)− I(Xh ≤ x∗ <Xa) = I((Xa = x∗) ∩ (Xh > x∗,Xa > x∗)), (d) follows from

l(x∗)≥ 0 due to Assumption 1 (i). Thus, if (44)≤ 0, we have (32)< 0 and E[l(X̂)]>E[l(Xa)]. So a

necessary condition for E[l(X̂)]≤E[l(Xa)] is (44)≥ 0. Thus, we complete the proof of (iii). �

Proof of Example 3. By the definition of l(·),Xa,Xh, we have

E[l(Xa)I(Xa ≥ x∗)] = σ2/2,

E[l(Xh)I(Xh ≤ x∗)] =

∫ x∗−1

−∞

3ε

(xh−x∗)2
dxh =

∫ −1

−∞

3ε

x2
h

dxh = 3ε.

So if ε < σ2/(6a), then

E[l(Xa)I(Xa ≥ x∗)] = σ2/2≥ 3aε= aE[l(Xh)I(Xh ≤ x∗)].

Next, we prove E[l(X̂)]>E[l(Xa)]. According to the distribution of Xa,Xh (7), we have

E[l(X̂)]−E[l(Xa)]

= P(Xh =∞)E[(Xa−x∗)2] +

∫ x∗−1

−∞

∫ ∞
−∞

(min{xh, xa}−x∗)2
f(xa)dxaf(xh)dxh−E[(Xa−x∗)2]

(a)
=

∫ x∗−1

−∞

∫ ∞
−∞

(min{xh, xa}−x∗)2
f(xa)dxaf(xh)dxh− εσ2

=

∫ x∗−1

−∞

∫ xh

−∞
(xa−x∗)2

f(xa)dxaf(xh)dxh +

∫ x∗−1

−∞

∫ ∞
xh

(xh−x∗)2
f(xa)dxaf(xh)dxh− εσ2
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(b)

≥
∫ x∗−1

−∞

∫ ∞
xh

(xh−x∗)2
f(xa)dxaf(xh)dxh− εσ2

=

∫ x∗−1

−∞
(xh−x∗)2

∫ ∞
xh

f(xa)dxaf(xh)dxh− εσ2

(c)

≥ 1

2

∫ x∗−1

−∞
(xh−x∗)2

f(xh)dxh− εσ2

(d)
=

1

2

∫ x∗−1

−∞

3ε

(xh−x∗)2
dxh− εσ2

=
3ε

2
− εσ2

(e)

> 0,

where (a) follows from P(Xh = ∞) = 1 − ε, (b) follows from∫ x∗−1

−∞

∫ xh
−∞ (xa−x∗)2

f(xa)dxaf(xh)dxh ≥ 0, (c) follows from
∫∞
xh
f(xa)dxa ≥

∫∞
0
f(xa)dxa = 1/2

due to xh ≤ x∗−1< 0, (d) follows from the distribution of Xh (7), (e) follows from σ2 < 3/2 in the

condition of Example 3. �

Proof of Corollary 1. We define D(xh) := E[l(Xa)]−E[l(X̂)] as a function of xh. By (31), we

have

D(xh)−D(xh + ∆) =

∫ xh+∆

xh

(l(xa)− l(xh))f(xa)dxa, (45)

for any ∆> 0.

When xh ≥ x∗, we have l(xa)≥ l(xh) for xa ≥ xh according to Assumption 1 (ii). Thus, D(xh)≥

D(xh + ∆).

When xh <x
∗, there exists a small enough ∆ such that xh+∆<x∗. And for xh ≤ xa ≤ xh+∆<

x∗, we have l(xa)≤ l(xh) according to Assumption 1 (ii). Thus, D(xh)≤D(xh + ∆).

In summary, D(xh) increases as xh when xh <x
∗ and decreases when xh ≥ x∗. �

Proof of Proposition 2. We write down the difference of the expected losses:

E[l(Xa)]−E[l(X̂)]

=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

l(xa)f(xa, x
l
h, x

u
h)dxa dxlh dxuh−

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

l(x̂)f(xa, x
l
h, x

u
h)dxa dxlh dxuh

=

∫ ∞
−∞

∫ ∞
−∞

∫ xlh

−∞
(l(xa)− l(xlh))f(xa, x

l
h, x

u
h)dxa dxlh dxuh

+

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
xu
h

(l(xa)− l(xuh))f(xa, x
l
h, x

u
h)dxa dxlh dxuh

=E[(l(Xa)− l(X l
h))I(Xa ≤X l

h)] +E[(l(Xa)− l(Xu
h ))I(Xa ≥Xu

h )], (46)

where the second equality holds by the definition X̂ = min{max{Xa,X
l
h},Xu

h} and Xu
h ≥X l

h. This

proves part (i).
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Next, we prove (ii). Separating the first term in (46) by X l
h <x

∗ and X l
h ≥ x∗, we have

E[(l(Xa)− l(X l
h))I(Xa ≤X l

h)]

=E[(l(Xa)− l(X l
h))I(Xa ≤X l

h <x
∗)] +E[(l(Xa)− l(X l

h))I(Xa ≤X l
h,X

l
h ≥ x∗)]

(a)

≥ E[(l(Xa)− l(X l
h))I(Xa ≤X l

h,X
l
h ≥ x∗)]

(b)
= E

[
(l(Xa)− l(X l

h))I(Xa ≤ x∗,X l
h ≥ x∗)

]
+E

[
(l(Xa)− l(X l

h))I(Xa >x
∗,X l

h ≥Xa)
]

(c)
= E

[
(l(Xa)− l(X l

h))I(Xa ≤ x∗,X l
h ≥ x∗)

]
+E

[
(l(Xa)− l(x∗) + l(x∗)− l(X l

h))I(Xa >x
∗,X l

h ≥Xa)
]

(d)

≥ E
[
(l(Xa)− l(X l

h))I(Xa ≤ x∗,X l
h ≥ x∗)

]
+E

[
(l(x∗)− l(X l

h))I(Xa >x
∗,X l

h ≥Xa)
]

(e)

≥ E
[
(l(Xa)− l(x∗) + l(x∗)− l(X l

h))I(Xa ≤ x∗,X l
h ≥ x∗)

]
+E

[
(l(x∗)− l(X l

h))I(Xa >x
∗,X l

h ≥ x∗)
]

(f)
= E

[
(l(Xa)− l(x∗))I(Xa ≤ x∗,X l

h ≥ x∗)
]

+E
[
(l(x∗)− l(X l

h))I(X l
h ≥ x∗)

]
(g)
= E

[
l(Xa)I(Xa ≤ x∗,X l

h ≥ x∗)
]
−E

[
l(X l

h)I(X l
h ≥ x∗)

]
+E[l(x∗)I(Xa >x

∗,X l
h ≥ x∗)]

(h)

≥ E
[
l(Xa)I(Xa ≤ x∗,X l

h ≥ x∗)
]
−E

[
l(X l

h)I(X l
h ≥ x∗)

]
, (47)

where the (a) follows from (l(Xa)− l(X l
h))I(Xa ≤X l

h < x∗) due to Assumption 1 (ii), (b) follows

from separating the expectation by Xa ≤ x∗ and Xa >x
∗, (c) follows from l(Xa)− l(X l

h) = l(Xa)−

l(x∗)+ l(x∗)− l(X l
h), (d) follows from E [(l(Xa)− l(x∗))I(Xa >x

∗,X l
h ≥Xa)]≥ 0 due to Assumption

1 (ii), (e) follows from I(Xa ≥ x∗,X l
h ≥Xa)≤ I(Xa ≥ x∗,X l

h ≥ x∗), (f) follows from I(Xa ≤ x∗,X l
h ≥

x∗)+ I(Xa >x
∗,X l

h ≥ x∗) = I(X l
h ≥ x∗), (g) follows from I(X l

h ≥ x∗)− I(Xa ≤ x∗,X l
h ≥ x∗) = I(Xa >

x∗,X l
h ≥ x∗), (h) follows from l(x∗)≥ 0 due to Assumption 1 (i).

For the second term in (46), we separate it by Xu
h ≤ x∗ and Xu

h >x
∗:

E[(l(Xa)− l(Xu
h ))I(Xa ≥Xu

h )]

=E[(l(Xa)− l(Xu
h ))I(Xa ≥Xu

h >x
∗)] +E[(l(Xa)− l(Xu

h ))I(Xa ≥Xu
h , x

∗ ≥Xu
h )]

(a)

≥ E[(l(Xa)− l(Xu
h ))I(Xa ≥Xu

h , x
∗ ≥Xu

h )]

(b)
= E [(l(Xa)− l(Xu

h ))I(Xa ≤ x∗,Xu
h ≤Xa)] +E [(l(Xa)− l(Xu

h ))I(Xa >x
∗,Xu

h ≤ x∗)]

=E [(l(Xa)− l(x∗) + l(x∗)− l(Xu
h ))I(Xa ≤ x∗,Xu

h ≤Xa)] +E [(l(Xa)− l(Xu
h ))I(Xa >x

∗,Xu
h ≤ x∗)]

(c)

≥ E [(l(x∗)− l(Xu
h ))I(Xa ≤ x∗,Xu

h ≤Xa)] +E [(l(Xa)− l(x∗) + l(x∗)− l(Xu
h ))I(Xa >x

∗,Xu
h ≤ x∗)]

=E [(l(Xa)− l(x∗))I(Xa ≥ x∗,Xu
h ≤ x∗)]−E [(l(Xu

h )− l(x∗))I(Xu
h ≤ x∗)]

=E [l(Xa)I(Xa ≥ x∗,Xu
h ≤ x∗)]−E [l(Xu

h )I(Xu
h ≤ x∗)] + l(x∗)P(Xa <x

∗,Xh ≤ x∗)
(d)

≥ E [l(Xa)I(Xa ≥ x∗,Xu
h ≤ x∗)]−E [l(Xu

h )I(Xu
h ≤ x∗)] , (48)

where (a) follows from (l(Xa)− l(Xu
h ))I(Xa ≥Xu

h >x
∗)≥ 0, (b) follows from separating the expec-

tation by Xa ≤ x∗ and Xa >x
∗, (b) follows from Assumption 1 (ii), (c) follows from (l(Xa)− l(x∗)+
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l(x∗)− l(Xu
h ))I(Xa ≤ x∗,Xu

h ≤Xa)≥ 0 due to Assumption 1 (ii), (d) follows from l(x∗)≥ 0 due to

Assumption 1 (i).

Thus, if (47) + (48)> 0, we have (46)> 0 and E[l(Xa)]≥ E[l(X̂)]. Thus, we complete the proof

for (ii).

To prove (iii), similar to (47), we separate the first term in (46) by x∗ ≤Xa ≤X l
h, Xa ≤ x∗ ≤X l

h,

and Xa ≤X l
h ≤ x∗:

E[(l(Xa)− l(X l
h))I(Xa ≤X l

h)]

=E[(l(Xa)− l(X l
h))I(Xa ≤X l

h ≤ x∗)] +E
[
(l(Xa)− l(X l

h))I(Xa ≤ x∗,X l
h ≥ x∗)

]
+E

[
(l(Xa)− l(X l

h))I(Xa ≥ x∗,X l
h ≥Xa)

]
(a)

≤ E[(l(Xa)− l(X l
h))I(Xa ≤X l

h ≤ x∗)] +E
[
(l(Xa)− l(X l

h))I(Xa ≤ x∗,X l
h ≥ x∗)

]
(b)
= E[(l(Xa)− l(x∗) + l(x∗)− l(X l

h))I(Xa ≤ x∗,X l
h ≥Xa)]

(c)

≤ E[(l(Xa)− l(x∗))I(Xa ≤ x∗)] +E[(l(x∗)− l(X l
h))I(Xa ≤ x∗ ≤X l

h)]

=E[l(Xa)I(Xa ≤ x∗)]−E[l(X l
h)I(Xa ≤ x∗ ≤X l

h)]− l(x∗)P(Xa ≤ x∗,Xh >x
∗)

(d)

≤ E[l(Xa)I(Xa ≤ x∗)]−E[l(X l
h)I(Xa ≤ x∗ ≤X l

h)], (49)

where (a) follows from (l(Xa)− l(X l
h))I(Xa ≥ x∗,X l

h ≥Xa)≤ 0 due to Assumption 1 (ii), (b) follows

from I(Xa ≤X l
h ≤ x∗)+ I(Xa ≤ x∗,X l

h ≥ x∗) = I(Xa ≤ x∗,X l
h ≥Xa), (c) follows from l(Xa)− l(x∗)≥

0 and l(Xh)− l(x∗)≥ 0 due to Assumption 1 (ii) and I(Xa ≤ x∗,X l
h ≥Xa)≥ I(Xa ≤ x∗ ≤X l

h), (d)

follows from l(x∗)≥ 0 due to Assumption 1 (i).

Similar to (48), we separate the second term in (46) by x∗ ≤ Xu
h ≤ Xa, X

u
h ≤ x∗ ≤ Xa, and

Xu
h ≤Xa ≤ x∗:

E[(l(Xa)− l(Xu
h ))I(Xa ≥Xu

h )]

=E[(l(Xa)− l(Xu
h ))I(Xa ≥Xu

h ≥ x∗)] +E [(l(Xa)− l(Xu
h ))I(Xa ≤ x∗,Xu

h ≤Xa)] (50)

+E [(l(Xa)− l(Xu
h ))I(Xa ≥ x∗,Xu

h ≤ x∗)]
(a)

≤ E[(l(Xa)− l(Xu
h ))I(Xa ≥Xu

h ≥ x∗)] +E [(l(Xa)− l(Xu
h ))I(Xa ≥ x∗,Xu

h ≤ x∗)]
(b)
= E[(l(Xa)− l(x∗) + l(x∗)− l(Xu

h ))I(Xa ≥ x∗,Xu
h ≤Xa)]

(c)

≤ E[(l(Xa)− l(x∗))I(Xa ≥ x∗)] +E[(l(x∗)− l(Xu
h ))I(Xa ≥ x∗,Xu

h ≤ x∗)]

=E[l(Xa)I(Xa ≥ x∗)]−E[l(Xu
h )I(Xa ≥ x∗,Xu

h ≤ x∗)]− l(x∗)P(Xa ≥ x∗,Xu
h >x

∗)
(d)

≤ E[l(Xa)I(Xa ≥ x∗)]−E[l(Xu
h )I(Xa ≥ x∗,Xu

h ≤ x∗)], (51)

where (a) follows from (l(Xa)− l(Xu
h ))I(Xa ≤ x∗,Xu

h ≤Xa)≤ 0 due to Assumption 1 (ii), (b) follows

from I(Xa ≥Xu
h ≥ x∗)+I(Xa ≥ x∗,Xu

h ≤ x∗) = I(Xa ≥ x∗,Xu
h ≤Xa), (c) follows from l(Xa)− l(x∗)≥



7

0, l(x∗)− l(Xh)≤ 0 and I(Xa ≥ x∗,Xu
h ≤Xa)≥ I(Xa ≥ x∗,Xu

h ≤ x∗), (d) follows from l(x∗)≥ 0 due

to Assumption 1 (i).

Thus, if (49) + (51) < 0, then (46)< 0 and E[l(Xa)] < E[l(X̂)]. So a necessary condition for

E[l(X̂)]≤E[l(Xa)] is (46)≥ 0. We complete the proof for (iii). �

Proof of Proposition 3. The proof basically follows the same argument as in Proposition 2.

We take the first part (i) as an example. We write down the difference of the expected losses:

E[l(Xa,W )]−E[l(X̂,W )]

=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

l(xa,w)f(xa, x
l
h, x

u
h,w)dxa dxlh dxuh dw

−
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

l(x̂,w)f(xa, x
l
h, x

u
h,w)dxa dxlh dxuh dw

=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

∫ xlh

−∞
(l(xa,w)− l(xlh,w))f(xa, x

l
h, x

u
h,w)dxa dxlh dxuh dw

+

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
xu
h

(l(xa,w)− l(xuh,w))f(xa, x
l
h, x

u
h,w)dxa dxlh dxuh dw

=E[(l(Xa,W )− l(X l
h,W ))I(Xa ≤X l

h)] +E[(l(Xa,W )− l(Xu
h ,W ))I(Xa ≥Xu

h )].

Thus, we complete the proof for part (i). �

B. Proofs in Section 4.1

Proof of Lemma 1. We reformulate the linear demand function (16) in the matrix form:

D=Aθ+ γp′ + ε,

where

D=

d1

...
dn

 , A=

1 −p1

...
...

1 −pn

 , θ=

(
α
β

)
, p′ =

p
′
1
...
p′n

 , ε=

ε1...
εn

 .

According to the algorithm assumed demand model (15), the OLS estimator is

θ̂=

(
α̂

β̂

)
= (A>A)−1A>D= θ+ (A>A)−1A>p′γ+ (A>A)−1A>ε. (52)

According to Assumption 3, we have

1

n

n∑
i=1

pi
p−→ µ,

1

n

n∑
i=1

p′i
p−→ µ, (53)

1

n

n∑
i=1

p2
i

p−→ µ2 +σ2,
1

n

n∑
i=1

p′2i
p−→ µ2 +σ2, (54)

1

n

n∑
i=1

pip
′
i−µ2 p−→ ρσ2, (55)
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where
p−→ denotes convergence in probability, the convergence follows by the weak law of large

numbers. By (53), (54), and (55), we have

1

n
A>A=

(
1 − 1

n

∑n

i=1 pi
− 1
n

∑n

i=1 pi
1
n

∑n

i=1 p
2
i

)
p−→
(

1 −µ
−µ µ2 +σ2

)
,

and
1

n
A>p′ =

(
1
n

∑n

i=1 p
′
i

− 1
n

∑n

i=1 pip
′
i

)
p−→
(

µ
−(ρσ2 +µ2)

)
.

And by Slutsky’s theorem, we have

(
1

n
A>A)−1 1

n
A>p′γ

p−→ γ

σ2

(
σ2 +µ2 µ
µ 1

)(
µ

−ρσ2−µ2

)
=
γ

σ2

(
µσ2 +µ3−µρσ2−µ3

−ρσ2

)
=

(
γµ(1− ρ)
−γρ.

)
Since ε is the random noise, we have (A>A)−1A>ε

p−→ 0.

So the OLS estimator in (52) is

θ̂=

(
α̂

β̂

)
=

(
α
β

)
+

(
γµ(1− ρ)
−γρ.

)
p−→
(
α+ γµ(1− ρ)

β− γρ.

)
Then the optimal price for AI is

pa =
α̂

2β̂

p−→ α+ γµ(1− ρ)

2(β− γρ)
,

which completes the proof for Lemma 1. �

Proof of Theorem 1. We define the revenue function r(p) := pd(p, p′) and provide a condition

for p̂ such that r(p̂)≥ r(pa). Note that p̂= min{pa, p′}. If pa ≤ p′, then r(p̂) = r(pa). So the condition

for p̂ boils down to the condition for p′ such that r(p′)≥ r(pa) when p′ < pa. According to (15), we

have

r(p′)− r(pa)

= p′(α+ (γ−β)p′)− pa(α−βpa + γp′)

= (γ−β)p′2 +

(
α− γ

2

α+ γµ(1− ρ)

β− ργ

)
p′+

β

4

(α+ γµ(1− ρ))2

(β− ργ)2
− α

2

α+ γµ(1− ρ)

β− ργ
. (56)

So r(p′)≥ r(pa) is equivalent to (56) ≥ 0. And multiplying (56) by −4(β− ργ)2, we have

4(β− ργ)2(β− γ)p′2− 2(β− ργ)
(
2αβ− 2αργ−αγ− γ2µ(1− ρ)

)
p′

− (α+ γµ(1− ρ)) (βγµ(1− ρ) + 2αργ−αβ)≤ 0. (57)

We write down the discriminant of the quadratic function (57):

∆ = 4(β− ργ)2(2αβ− 2αγρ−αγ− γ2µ+ γ2µρ)2

+ 16(β− ργ)2(β− γ)(α+ γµ(1− ρ)) (βγµ(1− ρ) + 2αργ−αβ) , (58)
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In the first term of (58), we have

(2αβ− 2αγρ−αγ− γ2µ+ γ2µρ)2

= 4α2β2 + 4α2γ2ρ2 +α2γ2 + γ4µ2 + γ4µ2ρ2− 8α2βγρ− 4α2βγ− 4αβγ2µ+ 4αβγ2µρ+ 4α2γ2ρ

+ 4αγ3µρ− 4αγ3µρ2 + 2αγ3µ− 2αγ3µρ− 2γ4µ2ρ. (59)

In the second term of (58), we have

(β− γ)(α+ γµ(1− ρ)) (βγµ(1− ρ) + 2αργ−αβ)

=−α2β2+2α2βγρ+2αβγ2µ(1− ρ)ρ+β2γ2µ2(1− ρ)2+α2βγ−2α2γ2ρ−2αγ3µ(1− ρ)ρ−βγ3µ2(1− ρ)2.
(60)

Plugging (59) and (60) into (58), we have

∆

4(β− ργ)2
= γ2 (α(1− 2ρ) + (γ− 2β)(1− ρ)µ)

2
,

and the roots of (57)

p=
2αβ− 2αργ−αγ− γ2µ(1− ρ)±

∣∣∣γ (α(1− 2ρ) + (γ− 2β)(1− ρ)µ)
∣∣∣

4(β− ργ)(β− γ)
. (61)

Let the function h(ρ) := α(1− 2ρ) + (γ− 2β)(1− ρ)µ. Since we assume µ≥ pNE = α
2β−γ , we have

h(0) = α+ (γ− 2β)µ≤ 0, h(1) =−α< 0.

Since h(ρ) is a linear function of ρ, we have h(ρ)≤ 0 for any ρ∈ [0,1]. So the roots of (56) are

pL =
αβ− 2αγρ−βγ(1− ρ)µ

2(β− ργ)(β− γ)
, pH =

α+ γµ(1− ρ)

2(β− γρ)
.

Note that pL < pH = pa. Then the sufficient condition for (56)≥ 0 is that pL ≤ p′ ≤ pa. Especially,

if pL < p
′ < pa, r(p̂) is strictly greater than r(pa).

Next, we prove that pL ≤ pNE ≤ pH . First, we consider

pNE − pL =
α

2β− γ
− αβ− 2αγρ−βγ(1− ρ)µ

2(β− ργ)(β− γ)

=
2βµ−α− γµ+ (2α− 2βµ+ γµ)ρ

2(2β− γ)(β− ργ)(β− γ)
. (62)

Since β > γ, ρ ∈ [0,1], we have the denominator in (62) is greater than zero. We claim that the

numerator in (62) is greater than zero for all ρ∈ [0,1]. To see this, let the linear function

g(ρ) := 2βµ−α− γµ+ (2α− 2βµ+ γµ)ρ.

We have g(0) = 2βµ−α−γµ≥ 0 because of µ≥ pNE = α
2β−γ . Also, we have g(1) = α> 0. Thus, for

any ρ∈ [0,1], we have g(ρ)≥ 0. So (62)≥ 0 and pNE ≥ pL. Next, we have

pH − pNE =
g(ρ)

2(2β− γ)(β− ργ)
=

2βµ−α− γµ+ (2α− 2βµ+ γµ)ρ

2(2β− γ)(β− ργ)
≥ 0. (63)

Combining (62) and (63), we have pL ≤ pNE ≤ pH . �
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C. Proofs in Section 4.2

Proof of Proposition 4. We first prove (i), the finite-sample result for the algorithmic decision.

The OLS estimator is

θ̂= (A>A)−1A>(f(p) + ε), (64)

where A is the design matrix

A=


A0

A1

...
An


(n+1)K×2

, Aj =


1 −pj
1 −pj
...
1 −pj


K×2

, f(p) =


f(p0)
f(p0)

...
f(pn)


(n+1)K×1

, ε=


ε01

ε01

...
εnK


(n+1)K×1

.

Then, we have

1

(n+ 1)K
A>A=

1

(n+ 1)K

(
A>0 A>1 · · · A>n

)

A0

A1

...
An

=
1

(n+ 1)K

n∑
i=0

A>i Ai

=
1

n+ 1

n∑
i=0

(
1
−pi

)(
1 −pi

)
=

1

n+ 1

n∑
i=0

(
1 −pi
−pi p2

i

)
. (65)

According to the price grid (18), we have

1

n+ 1

n∑
i=0

pi =
1

n+ 1

(
c(n+ 1) +

n∑
i=0

i
p̄− c
n

)
=

1

2
(p̄+ c), (66)

1

n+ 1

n∑
i=0

p2
i =

1

n+ 1

(
n∑
i=0

c2 + 2ic
p̄− c
n

+ i2
(p̄− c)2

n2

)
= cp̄+

2n+ 1

6n
(p̄− c)2. (67)

Plugging (66) and (67) into (65), we have

1

(n+ 1)K
A>A=

(
1 − 1

2
(p̄+ c)

− 1
2
(p̄+ c) cp̄+ 2n+1

6n
(p̄− c)2

)
,(

1

(n+ 1)K
A>A

)−1

=
1

n+2
12n

(p̄2 + c2)− n+2
6n
p̄c

(
cp̄+ 2n+1

6n
(p̄− c)2 1

2
(p̄+ c)

1
2
(p̄+ c) 1

)
, (68)

1

(n+ 1)K
A>(f(p) + ε) =

(
1

n+1

∑n

i=0 f(pi) + 1
(n+1)K

∑n

i=0

∑K

j=1 εij

− 1
n+1

∑n

i=0 pif(pi)− 1
(n+1)K

∑n

i=0 pi
∑K

j=1 εij

)
:=

(
c1n

−c2n

)
. (69)

Plugging (68) and (69) into (64), we have

θ̂=
1

n+2
12n

(p̄2 + c2)− n+2
6n
p̄c

(
cp̄c1n + 2n+1

6n
(p̄− c)2c1n− p̄+c

2
c2n

p̄+c
2
c1n− c2n

)
,

where c1n, c2n are defined in (69). The optimal price prescribed by AI is

pa =
α̂

2β̂
+
c

2
=
cp̄c1n + 2n+1

6n
(p̄− c)2c1n− p̄+c

2
c2n

(p̄+ c)c1n− 2c2n

+
c

2
. (70)

Let c1, c2 denote the estimator when K→∞:(
c1

c2

)
:=

(
1

n+1

∑n

i=0 f(pi)
1

n+1

∑n

i=0 pif(pi)

)
. (71)
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In the first step, we will show that for small constants δ1, δ2 > 0,

|c1n− c1| ≤ δ1, |c2n− c2| ≤
p̄+ c

2
δ2, (72)

with a high probability. In the second step, since the AI price pa (70) is continuous in c1n, c2n, we

have |pa− p∗a| ≤ δ with a high probability for a small constant δ.

Step one: Note that c1n− c1 is the average of (n+ 1)K i.i.d. σ-sub-Gaussian variables:

c1n− c1 =
1

(n+ 1)K

n∑
i=0

K∑
j=1

εij.

By the concentration inequality (see Proposition 2.6.1 in Vershynin 2018), we have

P (|c1n− c1| ≥ δ1)≤ 2exp

(
−δ

2
1(n+ 1)K

2σ2

)
. (73)

Similarly, we have

c2n− c2 =
1

(n+ 1)K

n∑
i=0

pi

K∑
j=1

εij.

By the definition of pi, we have

n∑
i=0

p2
i = (n+ 1)

(
cp̄+

2n+ 1

6n
(p̄− c)2

)
≤ 1

2
(n+ 1)(p̄+ c)2,

where the inequality follows by 2n+1
6n
≤ 0.5 due to n≥ 1. Thus, c2n− c2 is

√
(p̄+c)2

2(n+1)K
σ-sub-Gaussian

and

P
(
|c2n− c2| ≥

p̄+ c

2
δ2

)
≤ 2exp

(
−δ

2
2(n+ 1)K

4σ2

)
. (74)

Step two: Taking the partial derivative of pa with respect to c1n, c2n, we have

∂pa
∂c1n

=
−
(

1
6

+ 1
3n

)
(p̄− c)2c2n

((p̄+ c)c1n− 2c2n)
2 (75)

∂pa
∂c2n

=

(
1
6

+ 1
3n

)
(p̄− c)2c1n

((p̄+ c)c1n− 2c2n)
2 . (76)

We set δ1 < c1, δ2 <
2c2
p̄+c

in (72) to make sure c1n, c2n > 0. Thus, we have ∂pa
∂c1n

< 0 and ∂pa
∂c2n

> 0. On

the one hand, when c1n, c2n satisfy (72), the AI price pa attains the maximum when c1n = c1− δ1,

c2n = c2 + p̄+c
2
δ2. So we have an upper bound for pa by plugging c1n, c2n into (70):

pa ≤
(
cp̄+ 2n+1

6n
(p̄− c)2

)
(c1− δ1)− p̄+c

2

(
c2 + p̄+c

2
δ2

)
(p̄+ c)(c1− δ1)− 2

(
c2 + p̄+c

2
δ2

) +
c

2
. (77)

If K→∞, we have δ1→ 0, δ2→ 0, and the AI price pa converging to

p∗a =
cp̄c1 + 2n+1

6n
(p̄− c)2c1− p̄+c

2
c2

(p̄+ c)c1− 2c2

+
c

2
. (78)
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Let A := cp̄+ 2n+1
6n

(p̄− c)2, B := p̄+c
2

. By (77) and (78), we have

pa ≤
Ac1−Bc2−Aδ1−B2δ2

2Bc1− 2c2− 2B(δ1 + δ2)
+
c

2
, p∗a =

Ac1−Bc2

2Bc1− 2c2

+
c

2
. (79)

Thus,

pa− p∗a ≤
2(A−B2)(c2δ1 +Bc1δ2)

(2Bc1− 2c2− 2B(δ1 + δ2)) (2Bc1− 2c2)
, (80)

where A−B2 =
(

1
12

+ 1
6n

)
(p̄− c)2. We let

δ1 =
2(Bc1− c2)2

4c2(A−B2)
δ=

3((p̄+ c)c1/2− c2)
2

c2(1/2 + 1/n)(p̄− c)2
δ, δ2 =

2(Bc1− c2)2

4Bc1(A−B2)
δ=

6((p̄+ c)c1/2− c2)
2

(p̄+ c)c1(1/2 + 1/n)(p̄− c)2
δ.

(81)

For a constant δ satisfying

δ≤ c1c2(A−B2)

(Bc1 + c2)(Bc1− c2)
, (82)

we can check δ1 < c1, δ2 <
2c2
p̄+c

and

2B(δ1 + δ2)≤Bc1− c2. (83)

By (82), (80), (81) and (83), we have

pa− p∗a ≤ δ. (84)

On the other hand, when c1n, c2n satisfy (72), the AI price pa attains the minimum when c1n =

c1 + δ1, c2n = c2− p̄+c
2
δ2. So we have

pa− p∗a ≥
2(B2−A)(c2δ1 +Bc1δ2)

(2Bc1− 2c2− 2B(δ1 + δ2)) (2Bc1− 2c2)
. (85)

By (82), (85), (81) and (83), we have

pa− p∗a ≥−δ. (86)

In summary, by (73), (74), we have

P(|pa− p∗a| ≥ δ)≤ 2exp

(
−δ

2
1(n+ 1)K

2σ2

)
+ 2exp

(
−δ

2
2(n+ 1)K

4σ2

)
.

Next, we prove (ii), the finite-sample result for the range given by the human analyst. According

to the property of strong concavity, we have the revenue r(p) := (p − c)f(p) is unimodal and

r′(pj)> 0 for pj < p
∗. Thus, we have

r(pj−1)≤ r(pj)− r′(pj)
p̄

n
− λ

2

(
p̄− c
n

)2

< r(pj)−
λ

2

(
p̄− c
n

)2

, (87)

for pj < p
∗. Similarly, for pj ≥ p∗, due to r′(pj)< 0, we have

r(pj+1)≤ r(pj) + r′(pj)
p̄

n
− λ

2

(
p̄− c
n

)2

< r(pj)−
λ

2

(
p̄− c
n

)2

. (88)
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Let ∆ := λ
4

(
p̄−c
n

)2
. Due to (87), (88), we have

r(pj−1) + ∆< r(pj)−∆ for pj < p
∗, r(pj)−∆> r(pj+1) + ∆ for pj ≥ p∗. (89)

By the concentration inequality of sub-Gaussain variables, we have

P(|r̂(pj)− r(pj)| ≥∆) = 2P

(
1

K

K∑
k=1

εjk ≥
∆

pj

)
≤ 2P

(
1

K

K∑
k=1

εjk ≥
∆

p̄

)

≤ 2exp

(
−K∆2

2σ2p̄2

)
= 2exp

(
−Kλ

2(p̄− c)4

32σ2p̄2n4

)
.

Define the good event G= {|r̂(pj)− r(pj)|<∆, ∀j ∈ [0,1, . . . , n]}. We have

P(G)≥ 1− 2(n+ 1)exp

(
−Kλ

2(p̄− c)4

32σ2p̄2n4

)
.

Let j1 := max{j : pj < p
∗}, j2 := min{j : pj ≥ p∗}. Note that j2 = j1 + 1. By (89) and under event G,

we have

r̂(p0)≤ r(p0) + ∆< r(p1)−∆≤ r̂(p1)< · · ·< r̂(pj1),

r̂(pj2)≥ r(pj2)−∆> r(pj2+1) + ∆≥ r̂(pj2+1)> · · ·> r̂(pn).

Thus, the estimated revenue r(pj) strictly increases first, then strictly decreases. So the optimal

index j∗ ∈ {j1, j2} and p∗ ∈ [pj1 , pj2 ]⊂ [pj∗−1, pj∗+1]. �

Proof of Theorem 2. If pa ∈ [pj∗−1, pj∗+1], then p̂ = pa and (p̂ − c)f(p̂) = (pa − c)f(pa). If

pa > pj∗+1, then p∗ ≤ p̂= pj∗+1 < pa and (p̂− c)f(p̂)≥ (pa− c)f(pa), since (p− c)f(p) is unimodal.

Also, we have (p̂− c)f(p̂)≥ (pa− c)f(pa) when pa < pj∗−1. Therefore, we complete the proof. �

D. Proofs in Section 4.3

Proof of Lemma 2. Since there is a constant term in the covariate W , we define W = (1 W ′>)>

and rewrite the true model and the contaminated model in the following:

X =
(
1 W ′>

)(β0

β1

)
+ ε, XC =

(
1 W ′>

)(β0

β1

)
+B+ ε.

We rewrite the contaminated model in the matrix form:

XC =Aβ+B+ ε,

where the vector of response, the design matrix, the vector of contamination and noise are

XC =

XC1

...
XCn

 , A=

1 W ′>
1

...
...

1 W ′>
n

 , B =

B1

...
Bn

 , ε=

ε1...
εn

 .
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The OLS estimator for the contaminated training samples is

β̂ = (A>A)−1A>XC = (A>A)−1A> (Aβ+B+ ε) = β+

(
1

n
A>A

)−1
1

n
A>B+

(
1

n
A>A

)−1
1

n
A>ε.

(90)

By Corollary 3.1 in Wooldridge (2010), we have(
1

n
A>A

)−1
p−→
(
E[WW>]

)−1
=

(
1 E[W ′]>

E[W ′] E[W ′W ′>]

)−1

. (91)

By the inverses of partitioned matrices (Greene 2003), we have (91)

=

(
1 +E[W ′]> (E[W ′W ′>]−E[W ′]E[W ′]>)

−1 E[W ′] −E[W ′]> (E[W ′W ′>]−E[W ′]E[W ′]>)
−1

− (E[W ′W ′>]−E[W ′]E[W ′]>)
−1 E[W ′] (E[W ′W ′>]−E[W ′]E[W ′]>)

−1

)
.

(92)

For the last term in (90), we have

1

n
A>ε=

(
1
n

∑n

t=1 εt
1
n

∑n

t=1W
′
tεt

)
p−→
(

E[εt]
E[W ′

tεt]

)
= 0, (93)

where
p−→ denotes convergence in probability, the convergence follows by the weak law of large

numbers and the last equality follows by the independence of εt and W ′
t . Then, by Slutsky’s theorem

and (91), (92), (93), we have (
1

n
A>A

)−1
1

n
A>ε

p−→ 0. (94)

Considering the term including B in (90), we have

1

n
A>B =

(
1
n

∑n

t=1Bt
1
n

∑n

t=1W
′
tBt

)
p−→
(

E[B]
E[W ′B]

)
=

(
1

E[W ′]

)
E[B], (95)

where the last equality follows by the independence of Bt and W ′
t .

By (92) and (95), we have (
1

n
A>A

)−1
1

n
A>B

p−→
(

1
0

)
E[B]. (96)

Finally, plugging (94), (96) into (90), we have

β̂
p−→ β+

(
1
0

)
E[B], Xa(W ) =W>β̂

p−→W>β+E[B]. �

Proof of Proposition 5. Recalling that E[B] = pb, Xa(W ) =W>β + pb and the loss function

is defined as the square error, i.e., l(Xa(w),w) = (Xa(w)− x∗(w))2. We write down the difference

of the losses,

l(Xa(w),w)− l(X̂(w),w) = (Xa(w)−w>β)2− (X̂(w)−w>β)2

=
(
p2b2− (Xu

h −w>β)2
)
I(Xu

h ≤w>β+ pb). (97)

Since Xu
h satisfies (27), we have

w>β ≤Xu
h + pb, ∀ w ∈W. (98)

We will show (97)≥ 0 by discussing w in the following three cases.
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Figure 2 Intuition behind the proof of Proposition 5.

(1) For the w satisfying Xu
h ≤ w>β ≤Xu

h + pb, we have 0≤ w>β −Xu
h ≤ pb. Thus, p2b2 − (Xu

h −

w>β)2 ≥ 0 and (97)≥ 0.

(2) For the w satisfying Xu
h − pb≤w>β ≤Xu

h , we have −pb≤w>β−Xu
h ≤ 0. Thus, p2b2− (Xu

h −

w>β)2 ≥ 0 and (97)≥ 0.

(3) For the w satisfying w>β ≤Xu
h − pb, we have (97) = 0.

We have proved (97)≥ 0 for any w ∈W. Thus, we have l(Xa(w),w)≥ l(X̂(w),w) for any w ∈W.

�

Proof of Theorem 3.

Let b := E[B], then Xa(W ) = W>β + b. We first write down the difference of the square-error

losses:

l(Xa(w),w)− l(X̂(w),w)

= (Xa(w)−w>β)2− (X̂(w)−w>β)2

(a)
=
(
(Xa(w)−w>β)2− (Xu

h −w>β)2
)
I (Xu

h ≤Xa(w))

+
(
(Xa(w)−w>β)2− (X l

h−w>β)2
)
I
(
X l
h ≥Xa(w)

)
(b)
=
(
b2− (Xu

h −w>β)2
)
I
(
Xu
h ≤w>β+ b

)
+
(
b2− (X l

h−w>β)2
)
I
(
X l
h ≥w>β+ b

)
, (99)

where (a) follows from the definition of X̂(w), (b) follows from Xa(W ) =W>β + b. Since X l
h,X

u
h

satisfies (28), we have for any w ∈W,
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Figure 3 Intuition behind the proof of Theorem 3.

X l
h− b≤w>β ≤Xu

h + b, if b≥ 0, (100)

X l
h + b≤w>β ≤Xu

h − b, if b < 0. (101)

We will show (99)≥ 0 by discussing the sign of b and range of w in the following cases.

(1) If b ≥ 0, by (100), we have wTβ − b ≤Xu
h . For the first term in (99), if Xu

h further satisfies

Xu
h ≤wTβ+ b, we have b2− (Xu

h −w>β)2 ≥ 0. For the second term in (99), by (100), we have

X l
h ≤wTβ+ b. So we have (b2− (X l

h−w>β)2) I (X l
h ≥w>β+ b) = 0.

(2) If b < 0, we have Xu
h ≥w>β+ b due to (101). Thus, we have(

b2− (Xu
h −w>β)2

)
I
(
Xu
h ≤w>β+ b

)
= 0.

Next, we will show (b2− (X l
h−w>β)2) I (X l

h ≥w>β+ b)≥ 0.

(2.1) For the w satisfying X l
h + b ≤ w>β ≤X l

h, we have b ≤ w>β −X l
h ≤ 0. Thus, b2 − (X l

h −

w>β)2 ≥ 0 and (b2− (X l
h−w>β)2) I (X l

h ≥w>β+ b)≥ 0.

(2.2) For the w satisfying X l
h ≤w>β ≤X l

h− b, we have 0≤w>β −X l
h ≤−b. Thus, b2− (X l

h−

w>β)2 ≥ 0 and (b2− (X l
h−w>β)2) I (X l

h ≥w>β+ b)≥ 0.

(2.3) For the w satisfying X l
h− b≤w>β, we have (b2− (X l

h−w>β)2) I (X l
h ≥w>β+ b) = 0.

Therefore, we have proved (99) ≥ 0 for any w ∈W. That is, l(X̂(w),w) ≤ l(Xa(w),w) for any

w ∈W. Taking expectation of w, we have

E[l(Xa(W ),W )]−E[l(X̂(W ),W )] =E
[
(Xa(W )−W>β)2

]
−E

[
(X̂(W )−W>β)2

]
≥ 0. �
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Proof of Lemma 3. Recall the observed covariate W , contamination error U and the true

covariate Z =W −U . We have

X =Z>β+ ε=W>β−U>β+ ε. (102)

Suppose the design matrix for W,U are A,B. Then the OLS estimator is

β̂ = (A>A)−1A>(Aβ−B>β+ ε) = β− (A>A)−1A>B>β+ (A>A)−1A>ε. (103)

We have
1

n
A>A

p−→E[WW>]
(a)
= E[ZZ>] +E[UU>]

(b)
= Σ1 + Σ2, (104)

where (a) follows from the independence of W and U , (b) follows from Assumption 4. Also, we

have
1

n
A>B

p−→E[(U +Z)U>] =E[UU>] = Σ2, (A>A)−1A>ε
p−→ 0. (105)

Plugging (104) and (105) into (103), we have

β̂
p−→
(
I − (Σ1 + Σ2)−1Σ2

)
β.

Since Σ1 is positive-definite and Σ2 is positive semi-definite, (Σ1 + pΣ2)−1Σ2β = 0 if and only if

Σ2β = 0. �

Proof of Theorem 4. Recall that the OLS estimator β̂ = β and Xa(Z) = Z>β + U>β. Note

that Z is independent of U . We first fix a covariate z and reformulate E[l(Xa(z), z)]−E[l(X̂(z), z)],

where the expectation is taken with respect to U . That is

E[l(Xa(z), z)]−E[l(X̂(z), z)]

=E
[
(Xa(z)− z>β)2

]
−E

[
(X̂(z)− z>β)2

]
(a)
= E

[(
(Xa(z)− z>β)2− (Xu

h − z>β)2
)
I (Xu

h ≤Xa(z))
]

+E
[(

(Xa(z)− z>β)2− (X l
h− z>β)2

)
I
(
X l
h ≥Xa(z)

)]
(b)
= E

[(
(U>β)2− (Xu

h − z>β)2
)
I(Xu

h ≤ z>β+U>β)
]

+E
[(

(U>β)2− (X l
h− z>β)2

)
I(X l

h ≥ z>β+U>β)
]

=E
[(
B2−u2(z)

)
I(u(z)≤B)

]
+E

[(
B2−u2(z)

)
I(u(z)≥B)

]
, (106)

where

B :=U>β, u(z) :=Xu
h − z>β, u(z) :=X l

h− z>β. (107)

Furthermore, (a), (b) follow from the definition of X̂,Xa. According to (29), we have

P(B ≥ b)≥ p, P(B ≤−b)≥ p. (108)
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According to (30) and p≤ 0.5, we have

b
(a)

≥
√

p

1− p
b

(b)

≥ max
z∈Z
{z>β}−Xu

h

(c)

≥ −u(z), −b≤−
√

p

1− p
b≤min

z∈Z
{z>β}−X l

h ≤−u(z), ∀z ∈Z,

(109)

where (a) follows from p ≤ 0.5, (b) follows from (30), (c) follows from (107). Next, we will show

(106)≥ 0 by discussing the range of z. The second series of inequality can be derived similarly.

(1) For the z satisfying z>β ≥Xu
h , we have u(z)≤ 0 and u(z)≤ 0 by (107). Thus, we have

E
[(
B2−u2(z)

)
I(u(z)≥B)

]
≥ 0, (110)

and

E
[(
B2−u2(z)

)
I(u(z)≤B)

]
(a)
= P(B ≥ b)

(
(B2−u(z)2)I(u(z)≤B)

)
+P(−b≤B ≤ b)

(
B2−u2(z)

)
I(u(z)≤B)

(b)

≥ P(B ≥ b)
(
(b2−u(z)2)I(u(z)≤ b)

)
+P(−b≤B ≤ b)

(
B2−u2(z)

)
I(u(z)≤B)

(c)

≥ P(B ≥ b)
(
(b2−u(z)2)I(u(z)≤ b)

)
− (P(−b≤B ≤ b))u2(z)I(u(z)≤ 0)

(d)

≥ p(b2−u2(z))− (1− 2p)u2(z)

= pb2− (1− p)u2(z)

= p1b
2− (1− p)(Xu

h − z>β)2

(e)

≥ 0, (111)

where (a) follows by P(B < −b) = 0 due to b ≥ −u(z) ≥ −B by (109), (b) holds by (B2 −

u(z)2)I(u(z) ≤ B) increasing in B when B ≥ b, (c) holds by
(
B2−u2(z)

)
I(u(z) ≤ B) ≥

−u2(z)I(u(z)≤ 0) when −b≤B ≤ b due to −b≤ u(z)≤ 0 by (109), (d) follows by (108) and

u(z) ≤ 0 ≤−u(z) ≤ b by (109), (e) follows by (30). Plugging (110) and (111) into (106), we

have (106)≥ 0.

(2) For the z satisfying X l
h ≤ z>β ≤Xu

h , we have u(z)≥ 0 and u(z)≤ 0 by (107). Thus, we have

E
[(
B2−u2(z)

)
I(u(z)≤B)

]
≥ 0 and E [(B2−u2(z)) I(u(z)≥B)]≥ 0. Then, (106)≥ 0.

(3) For the z satisfying z>β ≤X l
h, we have u(z)≥ 0 and u(z)≥ 0 by (107). Thus, we have

E
[(
B2−u2(z)

)
I(u(z)≤B)

]
≥ 0, (112)

and

E
[(
B2−u2(z)

)
I(u(z)≥B)

]
(a)
= P(B ≤−b)

(
(B2−u(z)2)I(u(z)≥B)

)
−P(−b≤B ≤ b)

(
B2−u2(z)

)
I(u(z)≥B)

(b)

≥ P(B ≤−b)
(
(b2−u(z)2)I(u(z)≥−b)

)
− (P(−b≤B ≤ b))u2(z)I(u(z)≥ 0)
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(c)

≥ p(b2−u2(z))− (1− 2p)u2(z)

= pb2− (1− p)u2(z)

= pb2− (1− p)(X l
h− z>β)2

(d)

≥ 0, (113)

where (a) follows by P(B > b) = 0 due to −b ≤ −u(z) ≤ −B by (109), (b) follows by

(B2 − u(z)2)I(u(z) ≥ −B) decreasing in B when B ≤ −b and (B2−u2(z)) I(u(z) ≥ B) ≥

−u2(z)I(u(z) ≥ 0) when −b ≤ B ≤ b due to 0 ≤ u(z) ≤ b by (109), (c) follows by (108) and

u(z)≥ 0≥−b, (d) follows by (30). Plugging (112), (113) into (106), we have (106)≥ 0.

Therefore, we have proved (106)≥ 0 for any z ∈Z. Finally, taking expectation with respect to Z,

we have

E[l(Xa(W ),Z)]−E[l(X̂(W ),Z)] =E
[
(Xa(W )−Z>β)2

]
−E

[
(X̂(W )−Z>β)2

]
≥ 0. �


	Introduction
	Related Literature
	An Analytical Framework for Human-Safeguarded Algorithmic Decisions
	Covariate Information

	Three Use Cases on Beneficial Human Augmentation
	Pricing Algorithm under Competition
	Misspecified Algorithms
	Data Contamination
	Contamination in Response
	Contamination in Covariates


	Conclusion
	Proofs in Section 3
	Proofs in Section 4.1
	Proofs in Section 4.2
	Proofs in Section 4.3


