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Abstract
We consider a decision maker allocating one unit of renewable and divisible resource in each period
on a number of arms. The arms have unknown and random rewards whose means are proportional
to the allocated resource and whose variances are proportional to an order b of the allocated re-
source. In particular, if the decision maker allocates resource Ai to arm i in a period, then the
reward Yi is Yi(Ai) = Aiµi + Ab

iξi, where µi is the unknown mean and the noise ξi is indepen-
dent and sub-Gaussian. When the order b ranges from 0 to 1, the framework smoothly bridges the
standard stochastic multi-armed bandit and online learning with full feedback. We design two algo-
rithms that attain the optimal gap-dependent and gap-independent regret bounds for b ∈ [0, 1], and
demonstrate a phase transition at b = 1/2. The theoretical results hinge on a novel concentration
inequality we have developed that bounds a linear combination of sub-Gaussian random variables
whose weights are fractional, adapted to the filtration, and monotonic.1

Keywords: renewable and divisible resource allocation, stochastic multi-armed bandit, gap-dependent
(independent) regret

1. Introduction

Consider the following three real-world examples of online decision-making problems.

Example 1 (Time Management) A PhD student needs to decide how to allocate her time in a day.
She can spend five hours exploring a few research directions and the rest on coursework. But the
payoff of studying the subjects is unknown and depends on the time invested. Fortunately, when the
sun rises again, she can plan her second day based on the feedback she has obtained from the first
day, and the resource (a day’s time in this case) is renewed. The objective is to find the best project
to spend time on in the long run and maximize the reward in terms of intellectual fulfillment.

Example 2 (Venture Capital Investment) A venture investor raises a fixed amount of funds and
invests it into multiple startup companies every month. Initially, the average returns of the com-
panies are unknown. The performance and thus the monthly return of the projects depend on the
capital invested. The objective is to learn the value of the companies and divert the fund to the
project(s) with the highest returns in the long run.

1. Accepted for presentation at the Conference on Learning Theory (COLT) 2023
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Example 3 (Vaccination Allocation) A government agency allocates COVID test kits to different
cities to control disease transmission. The total number of testing kits available every day is fixed
and the “reward” is the number of positive cases identified by the tests. The agency needs to learn
the prevalence of each city by observing the test results and allocate more test kits to the cities with
higher infection rates.

At a high level, all three examples share a few common features. The decision-making process
is dynamic; in each period, there is a fixed amount of renewable resource (time, money, test kits)
that can be divided and allocated to multiple arms (projects, companies, cities); the arms generate
random rewards whose means are unknown initially and depend on the allocated resource.

Except for the divisible resources, the problem is similar to the stochastic multi-armed ban-
dit (SMAB) problem studied extensively in the literature. In SMAB, in each period, the decision
maker has one unit of renewable resource, allocates the resource to exactly one of the K arms, and
observes the reward. However, in the above three examples, the divisible resources are a key feature
that cannot be ignored. This feature introduces fundamental and complex changes to SMAB: the
decision space becomes uncountably infinite in each period; how the reward of an arm depends on
the allocated resource also becomes an important characteristic of the problem. In this paper, we
tackle this decision-making problem by proposing a framework to incorporate divisible resources
into SMAB. In particular, if the decision maker allocates resource Ati ∈ [0, 1] to arm i ∈ [K] in pe-
riod t, then the reward Yti is Yti(Ati) = Atiµi+Ab

tiξti, where µi is the unknown mean and the noise
ξti is independent and sub-Gaussian with parameter σ. Thus, the expected reward is proportional to
the allocated resource, while the scale of the noise is proportional to an order b of the resource. As
we shall see, b reflects the signal-to-noise ratio (SNR) of the reward.

Developing theories upon the framework, this paper makes the following contributions to the
literature. First, we develop two algorithms for the problem, inspired by the design principles of
successive elimination and ϵ-greedy algorithms, for the gap-independent and gap-dependent regret,
respectively. We show that the algorithms attain the optimal rate of gap-independent and gap-
dependent regret for b ∈ (0, 1). (See Table 1 for the regret rates.) The regret leads to a number of
interesting findings. (1) the regret displays completely different behavior for b ≤ 1/2 and b > 1/2
and thus phase transition at b = 1/2. (2) the gap-dependent regret is O(log T ) for b ≤ 1/2 and finite
for b > 1/2. For the gap-independent bound, a larger b > 1/2 reduces the regret in terms of the
order of K but not T . (3) the regret smoothly bridges that of SMAB for small SNR (0 ≤ b ≤ 1/2)
and that of online learning with full feedback for large SNR (b = 1).

Second, in the theoretical analysis, we establish a novel concentration inequality that bounds a
linear combination of sub-Gaussian random variables whose weights are fractional and monotonic,
which has not been discovered in the literature. In particular, consider independent σ-sub-Gaussian
random variables {ξs}ts=1 and a sequence of deterministic weights {as}ts=1 such that 0 ≤ a1 ≤
a2 ≤ . . . ≤ at. We prove that for any constant ϵ > 0, we have

P

 sup
0≤a1≤...≤at

∑t
s=1 asξs√∑t

s=1 a
2
s

≥
√

3

2
(log t)ϵ

 ≤ exp

(
− ϵ2

2σ2

)
. (1)

The supremum allows the concentration inequality to be adapted to random weights. To draw
connections to standard concentration inequalities, we note that for a given sequence {as}ts=1, one
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Table 1: Summary of regret bounds

Gap-independent Gap-dependent

SMAB (b = 0) (Auer et al., 2002) O
(√

TK
)

O
(
log T

∑
i∆

−1
i

)
b ∈ (0, 1/2] (this work) O

(√
TK

)
O
(
log T

∑
i∆

−1
i

)
b ∈ (1/2, 1) (this work) O

(√
TK1−b

)
O(1)

Full feedback (b = 1) (Degenne and Perchet, 2016) O
(√

T logK
)

O(1)

has

P

∑t
s=1 asξs√∑t

s=1 a
2
s

≥ ϵ

 ≤ exp

(
− ϵ2

2σ2

)
. (2)

Thus, taking the supremum over the set {0 ≤ a1 ≤ · · · ≤ at} doesn’t inflate the concentration
probability significantly, because both are concentrated within O((log t)3/2). On the other hand, if
we remove the monotonicity constraint, the random quantity is significantly less concentrated:

E

 sup
a1,...,at≥0

∑t
s=1 asξs√∑t

s=1 a
2
s

 = O (∥ξ∥2) = O(
√
t) (3)

Therefore, monotonicity is the key to the concentration probability. To prove the inequality, we
use semidefinite programming and other techniques. See Proposition 6 for details. To summarize
the challenges in the analysis, note that the union bound combined with (2) is not sufficient for
(1), because the supremum is taken over an infinite set. A common workaround in nonparametric
statistics is to use the covering number and apply the union bound to the centers of the covering
balls. However, the covering number of the monotonic set {0 ≤ a1 ≤ · · · ≤ at ≤ 1} (properly
normalized) is not qualitatively smaller than that of the hypercube [0, 1]t to give a much sharper
concentration inequality ((3) versus (1)). The concentration inequality (1) and its analysis may be
of independent interest.

1.1. Related Work

Our paper is closely related to the literature on SMAB (Auer et al., 2002; Bubeck and Cesa-Bianchi,
2012; Lattimore and Szepesvári, 2020; Slivkins, 2019; Agrawal et al., 2021) and multi-armed bandit
with full-information feedback (Degenne and Perchet, 2016; Slivkins, 2019; Zhang et al., 2019;
Huang et al., 2022), as our framework smoothly bridges the two settings. There are works studying
the middle ground of the two settings: Degenne et al. (2018) assumes the decision maker has extra
and free observations from time to time; Bubeck and Liu (2013); Locatelli et al. (2016); Yang and
Gao (2021) suppose the decision maker has prior knowledge on the optimal mean reward or the
suboptimality gaps. Wu et al. (2015) study a semi-bandit setting where the learner observes the
rewards of other arms with the same mean. However, these works consider indivisible resources
like SMAB and special cases between the two settings. The literature on MAB with knapsacks
consider the resource constraints in online learning problem (Agrawal and Devanur, 2014, 2016;
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Badanidiyuru et al., 2018; Merlis and Mannor, 2020; Kesselheim and Singla, 2020; Sivakumar
et al., 2022). Different from this work, the resource constraint is imposed over the time horizon.

The literature on exponential bandits (Keller et al., 2005; Keller and Rady, 2010; Chen et al.,
2020; Marlats and Ménager, 2021) studies the allocation of renewable and divisible resources to
multiple arms. The setting, however, is quite different: the decision maker terminates the process
as soon as an arm generates a positive reward. A Bayesian framework is commonly adopted to
characterize the optimal policy. Our paper differs from this literature in the problem setting and
the performance measure. Mandelbaum (1987) study a continuous-time setting of our problem
where all the arms share the divisible resources. However, their objective is to provide a policy that
maximizes the discounted reward, and they demonstrate that the optimal policy adopts a Gittins-
Index structure. In contrast, our paper focuses on a different reward structure, and our objective is
to develop algorithms to achieve the optimal rate of regret.

Our work is mostly related to the literature on online resource allocation with semi-bandit feed-
back (Lattimore et al., 2014, 2015; Dagan and Koby, 2018; Verma et al., 2019; Fontaine et al., 2020;
Sherman and Koren, 2021). Like our work, this literature focuses on the online allocation of renew-
able and divisible resources to multiple arms with a resource constraint in each period. However,
the reward models in these papers are quite different from ours. Lattimore et al. (2014, 2015); Da-
gan and Koby (2018) assume that the reward Yti(Ati) follows a Bernoulli distribution with a mean
of min{1, Ati/µi}, motivated by the problem of allocating the computing resources (cache, band-
width, CPU, etc) to multiple processes. They show the optimal gap-dependent and gap-independent
regret grow at a rate of O(log T/∆i) and O(

√
KT ), which matches SMAB. Verma et al. (2019)

further consider an additional threshold parameter θi in the reward model. Fontaine et al. (2020);
Sherman and Koren (2021) extend the reward model to general concave functions. Our work dif-
fers from these papers in terms of the reward model, algorithm design and regret rate. We adopt
a constant b to reflect the SNR, which allows the framework to smoothly bridges SMAB and full
feedback. The value of b dictates the algorithmic choice and optimal regret, and the phase transition
at b = 1/2 is a unique feature of our model.

2. Problem Formulation

We consider a resource allocation problem with K arms and a time horizon of length T . At each
period t ∈ {1, 2, . . . , T}, the decision maker allocates a resource Ati ∈ [0, 1] to arm i ∈ [K] =
{1, 2, . . . ,K} subject to the constraint that the total amount of the resource is one, i.e.,

∑K
i=1Ati =

1. For each arm i, a reward Yti is observed and collected. The mean of Yti is proportional to the
allocated resource Ati and the variance is proportional to an order b of the resource, given by the
following equation,

Yti(Ati) = Atiµi +Ab
tiξti, (4)

where the constant µi ∈ [0,∞) is the mean reward of arm i and the noises {{ξti}Tt=1}Ki=1 are
assumed to be independent and sub-Gaussian with parameter σ. The use of sub-Gaussian noises are
standard assumptions in online learning problems.

Policy. The decision maker does not know {µi}Ki=1 initially. At each period t ∈ [T ], she uses
the past history

Ht = {A11, A12, . . . , A1K , Y11, . . . , Y1K , . . . , At−1,1, . . . , At−1,K , Yt−1,1, . . . , Yt−1,K} , (5)
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to implement a the policy πt, which is a mapping from R2(t−1)K to [0, 1]K . The policy determines
the allocation of resources Ati = (πt(Ht))i to arm i at period t.

Regret. The goal is to maximize the expected total reward collected over all periods:

E

[
T∑
t=1

K∑
i=1

Yti(Ati)

]
= E

[
E

[
T∑
t=1

K∑
i=1

Yti(Ati)

∣∣∣∣Ht

]]
= E

[
T∑
t=1

K∑
i=1

Atiµi

]
.

As in SMAB, we benchmark the expected total reward against the total reward of the best arm
T maxi∈[K] µi if {µi}Ki=1 were known. Therefore, we define the best arm i∗ = argmaxi∈[K] µi and
the regret of a policy π

Rπ(T ) =

T∑
t=1

E

[
µi∗ −

K∑
i=1

Atiµi

]
= Tµi∗ − E

[
T∑
t=1

K∑
i=1

Atiµi

]
, (6)

The objective of the decision maker is thus designing a policy that achieves small regret. In the
literature, there are two types of regret bounds for gap-independent and gap-dependent cases. We
provide a summary here. In the gap-independent case, we focus on the minimization of (6) for
an arbitrary problem instance, including (µ1, . . . , µK) and the noise distribution. As a result, the
regret depends only on T and K. In the gap-dependent case, the mean reward (µ1, . . . , µK) is
fixed but unknown to the decision maker. The regret typically depends on the suboptimality gap
∆i := µi∗ − µi, in addition to T and K.

Motivation for the Reward Structure. To motivate the reward structure in (4), we can think of
period t in our model as a batch of many bandit decision epochs. The proportion of decision epochs
dedicated to arm i is Ati. If the random reward in each decision epoch is independent, identically
distributed, and has a finite variance (normalized by the epoch length), then by the central limit
theorem (CLT), the total reward from arm i follows (4) with b = 1/2 when we take the epoch
length to zero. To see this, let’s suppose there are n epochs in period t. If we allocate all the n
epochs to arm i, we have Ati = 1 and E[Yti] = µi, Var(Yti) = σ2. Then, we consider the random
reward in each epoch, denoted by {Xj}nj=1. Since Xj are i.i.d. and

∑n
j=1Xj = Yti, we have

E[Xj ] = E[Yti]/n = µi/n, Var(Xj) = Var(Yti)/n = σ2/n. If allocating ni epochs to arm i, we
have Ati = ni/n ≤ 1 and Yti =

∑ni
j=1Xj . Let n→∞ while maintaining Ati as a constant. Then,

by the CLT, we have Yti =
∑ni

j=1Xj
d→ µini/n +

√
niN(0, σ2/n) = Atiµi +

√
AtiN(0, σ2),

which follows (4) with b = 1/2.
Therefore, when b = 1/2 and n→∞, the reward Yti of arm i can be interpreted as a Brownian

motion with drift, where the increment is a normal random variable N(µi∆t, σ2∆t), and the allo-
cated resource Ati specifies the time horizon of the Brownian motion. Note that the Brownian mo-
tion can be normalized within the unit time horizon using the self-similar property B(a)

d
=
√
aB(1),

which implies that after a time duration a, the distribution of the Brownian motion is equivalent to
multiplying the Brownian motion observed at the unit time by

√
a.

However, in practical applications, particularly in financial markets, the increments of the re-
ward may exhibit correlation, which is referred to as Fractional Brownian motion, or are heavy-
tailed distributed, known as the stable Levy process. The Hurst parameter H ∈ [0, 1] (see Chapter
4 of Shiryaev (1999)) is employed to capture the correlation of increments or the decay rate of the
heavy-tailed increments. Both of the models adhere to the self-similar property B(a)

d
= aHB(1),
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where the scale is generalized to aH from a1/2. In line with this notion, we adopt the parameter b
to specify the magnitude of random fluctuations.

We further remark on the interpretation of b in (4). Since b > 0, the scale of noise Ab
ti increases

in Ati. This makes sense, as allocating more resources to an arm results in more randomness. On
the other hand, because b < 1, the normalized scale of the noise Ab

ti/Ati = Ab−1
ti is decreasing and

convex in Ati. It implies that the information acquisition is convex, as allocating more resources
to an arm allows for more information to be aquired than if the resources were divided evenly.
Moreover, because Ati ≤ 1, a larger b represents a less noisy environment. So the value of b reflects
the signal-to-noise ratio and characterizes how the scale of noise Ab

ti changes with the allocated
resource Ati.

Connection with MAB Literature. The constant b also enables our formulation to be con-
nected to the standard stochastic multi-armed bandit (SMAB) and online learning with full feed-
back. When b → 1, even if Ati ≪ 1 is small, the decision maker can observe Yti/Ati = µi + ξti,
which is as good as Ati = 1. Therefore, by allocating infinitesimal resources to all the arms, the
decision maker can obtain the full feedback (Degenne and Perchet, 2016; Slivkins, 2019). Con-
versely, when b → 0, the signal-to-noise ratio becomes very small and the normalized scale A−1

ti

becomes the most convex. In this case, any 0 < Ati < 1 is suboptimal in terms of exploration,
and the optimal regret matches that of SMAB. Therefore, the policy that attains the optimal regret
allocates binary Atis (see Section 3.1). It’s worth noting that when Ati ∈ {0, 1}, our formulation is
equivalent to SMAB and b no longer plays a role.

Because of the connection to SMAB, the regret bound of SMAB can provide benchmarks for
our problem. In particular, if we restrict the policy space to be {Ati :

∑K
i=1Ati = 1, Ati ∈ {0, 1}},

then our problem is identical to SMAB. Since the policy space is larger, i.e., Ati ∈ [0, 1] instead of
{0, 1}, the regret bound of SMAB serves as a lower bound for our problem. Specifically, it is well
known that (see, e.g., Lattimore and Szepesvári 2020) the optimal gap-independent regret bound
for SMAB is O(

√
KT ), and the optimal gap-dependent regret bound is O

(∑K
i=1∆i + log T/∆i

)
where ∆i is the suboptimality gap of arm i. In the next two sections, we analyze the regret bounds of
our problem in both scenarios and show when the regret bounds of SMAB are tight for our problem.

Before getting into the analysis, we provide a toy example to shed light on the design of the
algorithm. The key tradeoff in the algorithm is whether to pool the resource on a single arm or
evenly divide the resource among multiple arms in one period. In the toy examples, we consider
K arms over K periods. Suppose that the noise in (4) follows a standard normal distribution. We
compare two simple allocation strategies: exploring one arm in turn in a period or dividing the
resource evenly among all the arms in a period. For the former strategy, it is easy to see that the
estimator for the mean reward µ̂1i−µi ∼ N(0, 1), as it is based on a single sample from the normal
distribution. If we choose to divide, the allocated resources A1i = . . . = AKi = 1/K and the
mean estimator µ̂Ki − µi =

∑K
t=1 ξti/K

b ∼ N(0,K1−2b). The allocation strategy with a smaller
variance is preferable. Comparing K1−2b with 1, we find when b > 1/2 (< 1/2), it is better to
divide (pool) the resource. This toy example illustrates the role of b, why phase transition happens
at b = 1/2, and that the algorithms should be designed differently for b > 1/2 and b < 1/2. This
intuition guides us through the analysis in the next two sections.
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3. Gap-independent Regret Bound

3.1. Lower Bound

We first show the lower bound for the regret of the gap-independent case.

Theorem 1 Suppose T ≥ K and ξti ∼ N(0, 1). Then we have the gap-independent lower bound

Rπ(T ) ≥
{

1
27

√
(K − 1)T , for 0 ≤ b ≤ 1/2,

1
27(K − 1)1−b

√
T for 1/2 ≤ b ≤ 1.

According to Theorem 1, when b ≤ 1/2, the regret lower bound O(
√
KT ) is equivalent to the

SMAB problem. This implies that the standard algorithms such as UCB can be used by forcing
Ati ∈ {0, 1}, resulting in an optimal regret. Hence, Theorem 1 provides both an algorithm and
a tight upper bound for the gap-independent case when b ≤ 1/2. On the other hand, when b >
1/2, the lower bound O(K1−b

√
T ) is smaller than O(

√
KT ), suggesting that the standard SMAB

algorithms can be improved.
The proof of Theorem 1 mainly follows from the Le Cam’s method (LeCam, 1973; Yu, 1997).

The major difference from the standard analysis in SMAB is that the KL-divergence depends on
BT i :=

∑T
t=1A

2−2b
ti instead of the “total number of pulls”, ST i :=

∑T
t=1Ati. To see this, recall that

conditional on Ati, the random reward for arm i is Yti(Ati) = Atiµi + Ab
tiξti ∼ N(Atiµi, A

2b
ti ) :=

PAti . Considering another problem instance where the mean reward of arm i is µ′
i, the random

reward follows the distribution P ′
Ati

= N(Atiµ
′
i, A

2b
ti ). The KL-divergence between PAti and P ′

Ati

is

KL(PAti , P
′
Ati

) = A2
ti(µi − µ′

i)
2/(2A2b

ti ) = A2−2b
ti (µi − µ′

i)
2/2 = A2−2b

ti KL(Pi, P
′
i ),

where the two distributions Pi ∼ N(µi, 1), Pi′ ∼ N(µ′
i, 1). Therefore, the KL-divergence depends

on BT i instead of ST i.
To see why there is a phase transition at b = 1/2 in the lower bound, we compare BT i with ST i.

When b ≤ 1/2, we have A2−2b
ti ≤ Ati and BT i ≤ ST i, which implies that the KL-divergence of

the sample path will be no larger in our problem than in SMAB. However, when b > 1/2, we have
A2−2b

ti ≥ Ati and BT i ≥ ST i, which allows us to obtain a smaller lower bound than SMAB due to
the increased KL-divergence.

3.2. Algorithm for the Gap-independent Case

Next, we design algorithms that achieve the regret lower bound in Theorem 1. Note that when
b ≤ 1/2, we have shown that the regret lower bound matches that of SMAB. So standard SMAB
algorithms such as UCB already achieve the lower bound in our problem. In this section, we focus
on the bound O(K1−b

√
T ) when b ∈ (0.5, 1].

Before we present the algorithm, it’s worth noting that there are multiple estimators for the mean
reward estimation in our problem, as opposed to the sample mean used in SMAB.

Mean Estimators. Recalling the definition of the random reward Yti in (4), the first estimator
sums up the random rewards and then divides it by the sum of resources:

µ̂
(1)
ti =

∑t
s=1 Ysi∑t
s=1Asi

= µi +

∑t
s=1A

b
siξsi∑t

s=1Asi

. (7)
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The second mean estimator divides Yti by Ati and then sums up all the normalized rewards:

µ̂
(2)
ti =

1∑t
s=1 I(Asi > 0)

t∑
s=1

Ysi
Asi

I(Asi > 0) = µi +
1∑t

s=1 I(Asi > 0)

t∑
s=1

Ab−1
si ξsiI(Asi > 0).

(8)
It is easy to see that both estimators are unbiased if {Asi}ts=1 were a deterministic sequence. Note
that in most cases, µ̂(1)

ti ̸= µ̂
(2)
ti for the same history Ht. For example, considering t = 2 and

A1i = 1/2, A2i = 1/3, Y1i = 2, Y2i = 3, we have µ̂
(2)
ti = 6 and µ̂

(1)
ti = 6.5. However, when Ati is

restricted to {0, 1}, the two estimators are equivalent, i.e,

µ̂
(1)
ti = µ̂

(2)
ti = µi +

∑t
s=1 ξsiI(Asi = 1)∑t
s=1 I(Asi = 1)

:= µ̂ti, (9)

which is the sample mean in SMAB.
We investigate the standard error of the estimators, which is crucial in the construction of con-

fidence intervals. Note that µ̂(1)
ti and µ̂

(2)
ti have different variances even for a given deterministic

sequence {Asi}ts=1. To see this, suppose the noise ξsi ∼ N(0, 1) and denote the total number of
pulls Sti =

∑t
s=1Asi. In the sample mean used in SMAB, we have µ̂ti − µi ∼ N(0, 1/Sti).

However, for µ̂(1)
ti , we have

µ̂
(1)
ti − µi ∼ N(0, 1/R

(1)
ti ), where R

(1)
ti =

(∑t
s=1Asi

)2∑t
s=1A

2b
si

. (10)

For µ̂(2)
ti , we have

µ̂
(2)
ti − µi ∼ N(0, 1/R

(2)
ti ), where R

(2)
ti =

(∑t
s=1 I(Asi > 0)

)2∑t
s=1A

2b−2
si I(Asi > 0)

. (11)

Thus R(1)
ti and R

(2)
ti affect the variance of µ̂(1)

ti and µ̂
(2)
ti . If R(1)

ti and R
(2)
ti are larger than Sti, then

the mean estimators µ̂(1)
ti and µ̂

(2)
ti converge to µi faster than µ̂ti and thus reduce the regret. We use

µ̂
(1)
ti and µ̂

(2)
ti to design the algorithms for matching the gap-independent and gap-dependent bound

respectively.

Remark 2 (Alternative Mean Estimators) We point out that there are other alternative estima-
tors. We divide the time periods from 1 to t into L intervals: [1, t1], [t1 + 1, t2], . . . , [tL−1 + 1, t]
and define t0 = 0, tL = t. In each interval, we give an estimator using (7) and then summarize all
the estimators using (8):

µ̂
(3)
ti =

1∑L
l=1 I

(∑tl
s=tl−1+1Asi > 0

)
 L∑

l=1

∑tl
s=tl−1+1 Ysi∑tl
s=tl−1+1Asi

I

 tl∑
s=tl−1+1

Asi > 0

 . (12)

The estimators µ̂
(1)
ti and µ̂

(2)
ti are special cases of µ̂(3)

ti where L = 1 and t. The total number of
possible µ̂(3)

ti is 2t because every period can be the end of an interval. So the choice of intervals will
affect the value of µ̂(3)

ti , and makes the analysis complicated. In this paper, we use µ̂
(1)
ti and µ̂

(2)
ti to

design algorithms. We leave the analysis of µ̂(3)
ti as a future research direction.
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Algorithm. The algorithm we propose for the gap-independent case is based on successive
elimination (SE). In the first period, the algorithm uniformly allocates the resource to all arms.
Over time, it gradually eliminates the suboptimal arms with low mean reward and keeps track of the
active set of arms. The resource is uniformly allocated to the arms in the active set. The elimination
rule for the arms is the critical point. We construct a confidence interval using the mean estimator
(7) and compare the upper confidence bound (UCB) of an active arm to the lower confidence bound
(LCB) of the current optimal arm. If the UCB is less than the LCB, then we expect the arm is not
optimal and should be eliminated. Finally, at the end of T periods, the suboptimal arms will most
likely be eliminated, leaving only the true optimal arm. The detailed steps of the algorithm are
shown in Algorithm 1.

Algorithm 1 Successive Elimination with Divisible Resources
1: Input: constant b ∈ [1/2, 1) , σ
2: Initialize the active set D ← [K]
3: for t = 1, 2, . . . , T do
4: Allocate 1/|D| to each arm in D and observe Yti for i ∈ D

5: Let R(1)
ti =

(∑t
s=1Asi

)2 / (∑t
s=1A

2b
si

)
, CI(t, i) = 2

√
3σ
√
log t log T

/√
R

(1)
ti

6: Construct UCBti = µ̂
(1)
ti + CI(t, i), LCBti = µ̂

(1)
ti − CI(t, i)

7: For i ∈ D, if UCBti < maxj∈D LCBtj , then D ← D \ {i}
8: end for

Compared with the standard SE algorithm for SMAB (Even-Dar et al., 2002, 2006; Perchet
and Rigollet, 2013; Gao et al., 2019), the major difference is the construction of the confidence
interval. First, only one arm is allowed to select in standard SE, while Algorithm 1 explores all the
surviving arms in one period by dividing the unit resource, which accelerates the exploration rate.
Second, the confidence interval is CIti = O(

√
log T/Sti) in standard SE, whereas in Algorithm 1,

it’s O(log T
/√

R
(1)
ti ). As showed in (10), the variance of µ̂(1)

ti is determined by the sequence R
(1)
ti

rather than Sti. Also, the CIti grows in O(log t) instead of O(
√
log t). This is because a larger

confidence interval is required to make sure the validity of concentration inequality for µ̂(1)
ti than

the mean estimator for SMAB showed in (9). We also remark that Algorithm 1 is straightforward
to implement: it only requires the knowledge of constant b and sub-Gaussian parameter σ, and the
quantities µ̂(1)

ti , R
(1)
ti can be computed efficiently.

Theorem 3 For T ≥ K, Algorithm 1 achieves the gap-independent regret O(K1−b
√
T log T ).

The regret upper bound in Theorem 3 matches the lower bound in Theorem 1, ignoring the log T
term. So the Algorithm 1 achieves the optimal rate of regret.

Remark 4 (Estimate b) When b is unknown, we can dedicate a burning period in the beginning
of the horizon to estimate it. More precisely, we fix arm i and allocate A1 = AL+1 = a1, A2 =
AL+2 = a2, . . . , AL = A2L = aL, and observe the rewards Yt, t = 1, . . . , 2L. To offset the
mean effect, we compare Yt with Yt+L and let Dt := Yt+L − Yt = abt(ξt+L − ξt) which follows the
distribution of

√
2abtσ sub-Gaussian. Taking logarithm of both sides, we have logDt = b log at +

log(
√
2ξt). Then we can estimate b by regressing logDt on log at. Although we have not provided

9
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Figure 1: Relationship between Ati and τ .

a rigorous proof, this procedure is unlikely to increase the regret rate. Moreover, if the decision
maker knows a lower bound of b, i.e., b0 ∈ [0.5, b], then he can use b0 in the algorithms to achieve
the regret O(

√
TK1−b0) That’s because the misspecified b only enlarges the confidence interval

constructed in Algorithm 1, but will not affect the convergence rate of the mean estimator µ̂(1)
ti and

µ̂
(2)
ti .

3.3. Analysis of Theorem 3

Process Represented by Stopping Times. As we mentioned in Section 2, the decision space of our
problem in one period is the simplex in [0, 1]K , much harder to track than SMAB. The benefit of SE
is to reduce the decision space to K stopping times. To see this, let {τi}Ki=1 ∈ {1, 2, . . . , T} be the
last period arm i remains active (T for arms surviving to the last period). Let τ(1) ≤ τ(2) ≤ . . . ≤
τ(K) be their order statistics. In period t ∈ [1, τ(1)], all K arms are active. For t ∈ [τ(1) + 1, τ(2)],
one arm is eliminated and K−1 arms remain active, and so on. From Algorithm 1, at least one arm
survives in period T so τ(K) = T . The resource allocated to arm i at period t is

Ati =
1

K − j + 1
I
(
τ(j−1) + 1 ≤ t ≤ τ(j) ≤ τi

)
, (13)

where τ(0) := 0. To analyze the algorithm, we can focus on the smaller space of the stopping times
τ = {τ1, τ2, . . . , τK} ∈ {1, 2, . . . , T}K , because of the one-to-one correspondence between τ and
the regret.

A New Concentration Inequality. The stopping times are random variables whose realiza-
tions depend on the problem instance and the noise {{ξti}Ki=1}Tt=1. It creates challenges for the
concentration inequality of µ̂(1)

ti showed in (7), which has not appeared in the analysis of SMAB
algorithms. More precisely, in the standard concentration result, for independent noise {ξsi}ts=1,
the sample mean

∑t
s=1 ξsi/t grows at the rate O(

√
log t/t) with a high probability. However, for

the mean estimator µ̂(1)
ti , the allocation Ati in the denominator is also correlated with the noises

ξ1i, . . . , ξt−1,i. As a result, the sequence µ̂
(1)
ti − µi =

∑t
s=1A

b
siξsi

/∑t
s=1Asi cannot be expressed

as a sum of martingale differences, and results such as Azuma’s or Bernstein’s inequalities can not

10
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be applied. To see this, note that

E
[
µ̂
(1)
ti − µi|Ht

]
=

∑t−1
s=1A

b
siξsi∑t

s=1Asi

+
Ab

ti∑t
s=1Asi

E[ξti] =
∑t−1

s=1A
b
siξsi∑t

s=1Asi

̸=
∑t−1

s=1A
b
siξsi∑t−1

s=1Asi

= µ̂
(1)
ti −µi.

So the dependence between Ai and ξi makes it difficult to prove the concentration for µ̂(1)
ti .

Remark 5 (Concentration Inequalities Used in SMAB) If we restrict Ati to zero or one, then
µ̂
(1)
ti − µi reduces to the sample mean

∑t
s=1 ξsiI(Asi = 1)/Sti for SMAB. Although the same issue

exists (Sti is random), it is common to use a union bound for all Sti ∈ {1, 2, . . . , T} and the con-
centration probability is typically still well-controlled after being inflated by a factor of T . In our
problem, however, since the allocation is continuous, the union bound blows up the concentration
probability. This is why we need to develop new approaches in this paper.

To address this issue, we decouple the dependence between Ai and ξi by considering the worst-
case scenario: ∣∣∣∣(µ̂(1)

ti − µi)

√
R

(1)
ti

∣∣∣∣ ≤ sup
Ai∈A

∑t
s=1A

b
siξsi√∑t

s=1A
2b
si

. (14)

where we have normalized the deviation by the standard deviation in (10). HereA is the set of all the
possible sequences Ai from Algorithm 1 before the elimination of arm i, i.e.,A = {(A1i, . . . , Ati) :
Asi ∈ {1/K, 1/(K−1), . . . , 1}, A1i ≤ . . . ≤ Ati}. As we note in (13), the sequence Ai is uniquely
determined by the stopping times τ .

It’s challenging to give a concentration result for the RHS of (14). Note that the cardinality ofA
is in the same order as

(
t+K
K

)
≈ tK if t≫ K. Therefore, applying the union bound toA introduces

an exponential term in K that prohibits us from obtaining the optimal regret. Another common
technique used in nonparametric statistics to bound such an event is to use covering numbers: de-
compose A into a number of balls and apply the union bound to the ball centers; use continuity to
bound the points in each ball. However, the covering number of A is not much smaller than the
covering number of [0, 1]t, equivalent to the removal of the monotonicity constraint. As explained
in the introduction, it leads to a much worse concentration probability and we cannot obtain the
optimal regret.

Next, we state our major theoretical result in this section. We first introduce a continuous version
of A: Am = {(a1, a2, . . . , at) : 0 < a1 ≤ a2 ≤ . . . ≤ at ≤ 1}.

Proposition 6 (Concentration Inequality for Monotone Weights) For Am and independent σ-
sub-Gaussian ξs and any constant ϵ > 0, we have

P

 sup
a∈Am

∑t
s=1 asξs√∑t

s=1 a
2
s

≥
√

3

2
(log t)ϵ

 ≤ exp

(
− ϵ2

2σ2

)
. (15)

In (15), taking ϵ = O(σ), we have that (14)= O(log t) with high probability. To compare with the
standard concentration inequalities, noting that for a1 = a2 = . . . = at, one has (

∑t
s=1 ξs)/

√
t =

O(
√
log t). So taking the supremum over A doesn’t inflate the concentration probability signifi-

cantly, and the relaxation from A to Am is not loose. Meanwhile, the monotonicity constraint is

11
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crucial. If we relax the set A to [0, 1]t, the growth rate of (14) is O(
√
t), which is too loose for the

regret. To see this, let cs := as
/√∑t

s=1 a
2
s, we have

E

 sup
a∈[0,1]t

∑t
s=1 asξs√∑t

s=1 a
2
s

 = E

(
sup

∥c∥2=1,c⪰0
c⊤ξ

)
(a)
= E


√√√√ t∑

s=1

ξ2s I(ξs > 0)

 (b)
= O

(√
t
)
,

where (a) follows from the optimal cs = ξsI(ξs > 0)
/√∑t

s=1 ξ
2
s I(ξs > 0), (b) follows from

E
(∑t

s=1 ξ
2
s I(ξs > 0)

)
= O

(
E
(∑t

s=1 ξ
2
s I(ξs ≤ 0)

))
= O

(
E
(
∥ξ∥22

))
= O

(√
t
)
, where the last

equality holds by the concentration of the norm (see Theorem 3.1.1 in Vershynin (2018) for detail).
Sketch of the Proof of Proposition 6. To utilize the monotonic property of sequence a, we

transform it to non-negative sequence b = (b1 = a1, b2 = a2 − a1, . . . , bt = at − at−1). Corre-
spondingly, we transform the random variables {ξs}ts=1 to {fs}ts=1, where fs = ξs+ . . .+ξt. Thus,
we have

∑t
s=1 asξs =

∑t
s=1 bsfs and

sup
a∈Am

∑t
s=1 asξs√∑t

s=1 a
2
s

= sup
b∈B

∑t
s=1 bsfs√∑t

s=1 (
∑s

i=1 bi)
2
, (16)

where B := {b1 > 0, b2 ≥ 0 . . . bt ≥ 0}. After the transform, since fs is
√
t− s+ 1σ-sub-

Gaussian, we define ϵs :=
√
t− s+ 1ϵ and show

P(fs ≤ ϵs =
√
t− s+ 1ϵ, ∀s) ≥ 1− t exp

(
− ϵ2

2σ2

)
. (17)

Thus, with a high probability, we have

(16)2 = sup
b∈B

(∑t
s=1 bsfs

)2∑t
s=1 (

∑s
i=1 bi)

2 ≤ sup
b∈B

(∑t
s=1 bs

√
t− s+ 1

)2∑t
s=1 (

∑s
i=1 bi)

2 ϵ2. (18)

The RHS of (18) has no randomness, and the numerator and denominator are quadratic functions of
b. They can be written in the matrix form:

(∑t
s=1 bs

√
t− s+ 1

)2
= bTAb,

∑t
s=1 (

∑s
i=1 bi)

2 =

bTBb, where A = V V T , V = (
√
t,
√
t− 1, . . . , 1)T and B is positive definite according to the

following decomposition:

B = DDT , D = DT =


1 1 . . . 1 1
1 1 . . . 1 0
...

... . . .
...

...

1 0
... 0 0

 , D−1 =


0 0 . . . 0 1
0 0 . . . 1 −1
...

...
...

...
...

1 −1 . . . 0 0

 . (19)

Based on the special structure of A,B, we apply the property of Schur complement to show that
A ≺ 3 log(t)B/2 and thus, (18)< 3 log(t)/2. Finally, we prove Proposition 6 by combining (16),
(17), and (18).

Remark 7 (Other Attempts to Prove Proposition 6) Note that the weighted average in (15) can
be reformulated as the supremum over a continuous index set of ξ: supc∈Cm cT ξ =

∑t
s=1 csξs,

12
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where cs = as
/√∑t

s=1 a
2
s and Cm = {c : ∥c∥2 = 1, 0 < c1 ≤ . . . ≤ ct ≤ 1}. A standard

technique to bound the supremum over an index set is the chaining rule, such as the Dudley’s chain-
ing or generic chaining (Talagrand, 2022). The fundamental idea behind this approach involves
constructing a hierarchical partition tree such that for a specific index, there exists a path along the
tree covering the index. By doing so, the supremum can be bounded by the length of the longest
path of the tree. However, applying the chaining rule to prove a concentration result as (15) poses
challenges. That’s because Cm is a special subset of the unit L2-sphere, and no existing results have
been found to provide a suitable partition tree (or covering number) for Cm. In the proof of Propo-
sition 6, instead of construcing a partition tree geometrically, we adopt an algebraic approach to
transform the monotonic index set to a non-negative set. This transformation significantly simplifies
the subsequent analysis.

Remark 8 (Self-Normalized Martingale Process) In statistics, there’s a stream of literature named
self-normalized martingale process (Bercu and Touati, 2008; Victor et al., 2009). These works fo-
cus on bounding the sum of martingale differences by the sum of the conditional second moments.
Since

∑t
s=1A

b
siξsi is a martingale process, we can leverage the findings of these studies (sub-

ject to additional assumptions) to establish that
∑t

s=1A
b
siξsi/(

∑t
s=1A

2b
si ) = O(

√
log t). Usually,√∑t

s=1A
2b
si = O(

√
t) holds. Thus, we have

∑t
s=1A

b
siξsi

/√∑t
s=1A

2b
si = O(

√
t log t). However,

this bound is much looser than the concentration result in Proposition 6. Because in (15), we prove∑t
s=1A

b
siξsi

/√∑t
s=1A

2b
si = O(log t). The reason for the loose result is that their analysis is de-

signed for the general martingale process but does not exploit the monotonic structure inherent in
our problem.

We defer the detailed proof of Proposition 6 to Appendix and focus on the analysis of Theorem
3 here.

Sketch of the Proof of Theorem 3. Proposition 6 provides a concentration inequality for
µ̂
(1)
ti for any allocation sequence Ai. We use the result to construct CI(t, i) (defined in Algo-

rithm 1), UCB(t, i) = µ̂
(1)
ti + CI(t, i) and LCB(t, i) = µ̂

(1)
ti − CI(t, i), and show that µi ∈

[LCB(t, i), UCB(t, i)] with a high probability. We use it to show that (1) the optimal arm i∗ will
most likely survive at the end of T period; (2) for an arm i to survive for a long time, the optimality
gap ∆i must be small, as must the regret incurred by arm i.

To show the above two claims, we define the good event

Gt = {µi∗ ≤ UCB(t, i∗), µi ≥ LCB(t, i) for i ̸= i∗}. (20)

By the concentration result (15), we have P(Gc
t) ≤ Kt−2. Under Gt, the optimal arm always

survives as UCB(t, i∗) ≥ µi∗ ≥ µi ≥ LCB(t, i). For an active arm i, we have LCB(t, i∗) ≤
UCB(t, i), which implies µ̂ti∗ − CI(t, i∗) ≤ µ̂ti + CI(t, i), and

∆i = µi∗ − µi ≤ µ̂ti∗ − µ̂ti + CI(t, i∗) + CI(t, i) ≤ 2(CI(t, i∗) + CI(t, i)) = 4CI(t, i),

where the last equality is because all active arms i have the same resource allocation sequence Ai

and CI(t, i).
Let Sτi,i denote the total number of pulls of arm i until period τi and recall the sequence µ̂

(1)
ti

showed in (7). The regret incurred by arm i is

Sτi,i∆i ≤ 4Sτi,iCI(τi, i) ≤ 4 · 2
√
3σ log T

/√
R

(1)
τi,i
· Sτi,i ≤ 8

√
3σ log T

√
Lτi,i ,

13
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where Lτi,i := S2
τi,i

/
R

(1)
τi,i

=
∑t

s=1A
2b
si . The total regret can be divided into two parts depending

on whether the event Gt occurs:

Rπ(T ) ≤
K∑
i=1

Sτi,i∆i +
T∑
t=1

P(Gc
t) = O

(
log T

K∑
i=1

√
Lτi,i

)
+K

T∑
t=1

t−2.

Note that the dominant term in Rπ(T ) is O
(∑K

i=1

√
Lτi,i

)
which is a function of Ai sequence and

is further determined by stopping times τ . The value of τ depends on the problem instance.
We provide an upper bound of Rπ(T ) for any possible value of τ ∈ [T ]K . The following lemma

shows the maximum value of
∑K

i=1

√
Lτi,i = O(K1−b

√
T ). Thus, the total regret Rπ(T ) has the

upper bound O(K1−b
√
T log T ).

Lemma 9 For any fixed τ1, τ2, . . . , τK ∈ {1, 2, . . . , T} and b ∈ [1/2, 1], we have

K∑
i=1

√√√√ τi∑
s=1

A2b
si ≤

√
1

2− 2b
K1−b

√
T , (21)

where Asi is defined in (13).

Note that the analysis of Lemma 9 is highly non-trivial because the maximum value in (21) cannot
be obtained by the extreme cases of τ . For example, when τ1 = . . . = τK−1 = 1 and τK = T (all
but one arms are eliminated in period one), we have

∑K
i=1

√
Lτi,i ≈

√
T . On the other hand, when

τ1 = . . . = τK = T (all arms remain active in period T ),
∑K

i=1

√
Lτi,i = K

√
TK−2b = K1−b

√
T ,

not achieving the maximum.
We prove Lemma 9 by constructing a special sequence {di}Ki=1. Specifically, let c2i =

∑τi
s=1A

2b
si .

We choose d2i = (K − i + 1)2b − (k − i)2b to make sure that
∑K

i=1 c
2
i d

2
i = τK ≤ T and∑K

i=1 1/d
2
i ≤ K2−2b/(2 − 2b). By the Cauthy-Schwarz inequality, we have the LHS of (21)

=
∑K

i=1 ci ≤
√∑K

i=1 c
2
i d

2
i ·
√∑K

i=1 1/d
2
i = the RHS of (21). The optimal τ is the solution to a

system of quadratic equations, so it doesn’t have a closed form. The detailed proof for Lemma 9 is
shown in the Appendix.

4. Gap-dependent Regret Bound

In this section, we propose an algorithm that achieves the optimal rate of regret in the gap-dependent
case. We first provide a lower bound for the regret. We define the environment as P := {v =
(µ1, . . . , µK), where µi ∈ [0,∞) for i = {1, . . . ,K}}. For an instance v ∈ P , recall that ∆i is the
suboptimality gap of arm i in v, i.e., ∆i = µi∗ − µi. The next theorem provides the gap-dependent
lower bound for the regret. Note that we use Rπ(T, v) to highlight the dependence on the instance.

Theorem 10 Suppose ξti ∼ N(0, 1) and b ∈ [0, 1/2]. Let π be a consistent policy over P , i.e., the
regret satisfies limT→∞Rπ(T, v)/T

p = 0, for any instance v ∈ P and any p > 0. Then it holds
that

lim inf
T→∞

Rπ(T, v)

log T
≥
∑

i:∆i>0

2

∆i
, ∀v ∈ P. (22)
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In Theorem 10, we restrict the policy π to be consistent: for any v ∈ P , the regret grows in a sub-
polynomial order of T . This condition is imposed to eliminate some unreasonable policies which
may achieve regret much smaller than (22) in special instances. The result (22) shows that the
asymptotic regret lower bound of our problem is the same as SMAB for b ≤ 1/2 and the algorithms
for SMAB will achieve the optimal regret for our problem. We do not develop a lower bound for
b > 1/2, because as we shall see in the next section, there exists policies or algorithms that attain
finite regret.

4.1. Algorithm for the Gap-dependent Bound when b > 1/2

Recall the mean estimators µ̂(1)
ti and µ̂

(2)
ti in Section 3.2. Here, we use µ̂

(2)
ti to design an algorithm

that achieves a finite gap-dependent regret bound for b > 1/2, because it has a benign property
demonstrated by the following example:

Example 4 Suppose Ati = t−α for α > 1. We have Sti =
∑t

s=1Asi = O(1), R(1)
ti = O(1) and

R
(2)
ti = t1−α(2−2b). If α < 1/(2− 2b), then R

(2)
ti →∞.

In Example 4, although the total resources Sti allocated to arm i by period t is finite, the mean
estimator µ̂(2)

ti can achieve increasing precision because the inverse standard deviation R
(2)
ti tends to

infinity. This property is not shared by µ̂
(1)
ti . Example 4 sheds light on algorithm design: if we can

allocate resource Ati = t−α for arm i, then the regret incurred by exploration will be bounded and
µi can be precisely estimated.

The algorithm is based on the ϵ-greedy policy for SMAB (Auer et al., 2002; Seldin and Slivkins,
2014; Seldin and Lugosi, 2017; Rouyer and Seldin, 2020; Bian and Jun, 2022). We allocate resource
ϵti = K−1t−α to suboptimal arms according to the estimation so far, where α satisfies 0 < α <
1/(2− 2b). The steps are shown in Algorithm 2 and the analysis is shown in Theorem 11.

Algorithm 2 ϵ-greedy
1: Input: b, α = 1 + ϵ/(2− 2b), ϵ ∈ (0, 2b− 1)
2: for t = 1, 2, . . . , T do
3: if t = 1 then
4: Uniformly divide the resource Ati = 1/K
5: else
6: Pick the current optimal i∗ ∈ argmaxi∈[K] µ̂

(2)
ti

7: Allocate Ati =

{
K−1t−α, i ̸= i∗

1−
∑

j ̸=i∗ Atj , i = i∗
and observe {Yti}Ki=1

8: end if
9: end for

Theorem 11 (Regret for Algorithm 2) For b ∈ (1/2, 1], Algorithm 2 achieves finite gap-dependent
regret(

2(1− b+ϵ)

Kϵ
+ 2⌈1/(2b−1−ϵ)⌉+4

) K∑
i=1

∆i+8

K∑
i=1

(
16σ2K2−2b⌈1/(2b−1−ϵ)⌉

∆2
i

)⌈1/(2b−1−ϵ)⌉

∆i.

(23)
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Note that the regret in (23) does not grow in T . When b = 1 and ϵ ≈ 0, then ∆
1−2/⌈2b−1−ϵ⌉
i ≈

∆−1
i and the regret is O

(∑K
i=1∆

−1
i

)
which is close to the regret of the full-information case, i.e.,

O
(
logK∆−1

min)
)
.

We would like to point out that Algorithm 2 can not achieve the optimal gap-independent bound
O(K1−b

√
T ). To see this, recall the gap-independent bound

R(T ) =

K∑
i=1

∆iE[ST i] ≤
∑

i:∆i<∆

∆E[ST i] +
∑

i:∆i≥∆

∆iE[ST i] ≤ ∆T +K∆1−2/(2b−1)

= O
(
Kb−1/2T 1.5−b

)
,

where the rate in T is far from optimal.

5. Conclusion

In this paper, we address an online resource allocation problem involving divisible and renewable
resources. We propose a reward framework where the mean of reward is proportional to the allo-
cated resource and the variance is proportional to an order b of the allocated resource. This frame-
work provides a smooth connection between the standard stochastic multi-armed bandits and online
learning with full feedback. We propose two algorithms that attain the optimal gap-dependent and
gap-independent regret bounds.

The paper makes several technical contributions, utilizing novel proof techniques. First, the
proof for the concentration inequality (Proposition 6) represents significant breakthrough. Its fun-
damental nature allows for the application to other algorithms. Second, we propose new types of
mean estimators (µ̂(1)

ti , µ̂
(2)
ti ) in the algorithms. These estimators and their analyses have not ap-

peared in the bandit literature. Third, in the analysis of the algorithms, we introduce the R
(1)
ti and

R
(2)
ti sequences to track the system state, in addition to the total resources Sti. The analysis for

the sequences is a novel contribution to the literature. Lastly, our paper presents a regret bound
of O(

√
TK1−b), where we believe it’s the first result to demonstrate a power function dependence

on K other than
√
K or

√
logK. To establish the new regret bound, we develop a new technical

method based on a careful construction using the Cauthy-Schwartz inequality (Lemma 9).
In terms of future research directions, we highlight two possibilities. First, it would be interest-

ing to explore whether it is possible to use a unified estimator (as mentioned in Remark 2) to develop
a single algorithm that achieves optimality in both regret bounds. Second, as suggested in Remark
7, an intriguing question is to consider the use of chaining techniques to establish the concentration
result presented in Proposition 6.
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Rémy Degenne, Evrard Garcelon, and Vianney Perchet. Bandits with side observations: Bounded
vs. logarithmic regret. Working Paper, 2018. https://doi.org/10.48550/arXiv.
1807.03558.
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Appendix A. Proofs in Section 3

Lemma 12 (KL-divergence Decomposition) Let v = {P1, . . . , PK} be the reward distributions
associated with a K-armed bandit where Pi = N(µi, 1), and let v′ = {P ′

1, . . . , P
′
K} be another

reward distributions where P ′
i = N(µ′

i, 1). Fix some policy π and let Pv and Pv′ be the probability
measures on the bandit problem induced by the t-round interconnection of π and v (respectively, π
and v′). Let Ati = (πt(Ht))i. Then, the KL divergence satisfies

KL (Pv,Pv′) =

K∑
i=1

Ev

[
t∑

s=1

A2−2b
si

]
KL(Pi, P

′
i ),

where 0 ≤ b < 1.

Proof The proof basically follows from Lemma 15.1 in Lattimore and Szepesvári (2020). We
present the whole proof for completeness.

Let ht = {a11, a12, . . . , a1K , y11, . . . , y1K , . . . , at−1,1, . . . , at−1,K , yt−1,1, . . . , yt−1,K} be a re-
alized sample path of Ht defined in (5). We have the probability density of the sample path ht under
Pv is

pv(ht) =
t∏

s=1

K∏
i=1

(πs(hs−1))ipv(ysi|asi) =
t∏

s=1

K∏
i=1

asipv(ysi|asi),

where pv(ysi|asi) is the probability that Ysi(asi) = ysi under v. The density of Pv′ is identical
except that pv is replaced by pv′ . Then, we have

pv(ht)

pv′(ht)
=

∏t
s=1

∏K
i=1 asipv(ysi|asi)∏t

s=1

∏K
i=1 asipv′(ysi|asi)

=

∏t
s=1

∏K
i=1 pv(ysi|asi)∏t

s=1

∏K
i=1 pv′(ysi|asi)

,

where the last equality holds because the terms involving the policy π cancel. Taking logarithms of
both sides, we have

log
pv(ht)

pv′(ht)
=

t∑
s=1

K∑
i=1

log
pv(ysi|asi)
pv′(ysi|asi)

.

And taking expectations of both sides with respect to v, we have

Ev

[
log

pv(Ht)

pv′(Ht)

]
=

t∑
s=1

K∑
i=1

Ev

[
log

pv(Ysi|Asi)

pv′(Ysi|Asi)

]
. (A1)

Note that

Ev

[
log

pv(Ysi|Asi)

pv′(Ysi|Asi)

]
= Ev

[
Ev

[
log

pv(Ysi|Asi)

pv′(Ysi|Asi)

∣∣∣Asi

]]
= Ev

[
KL(PAsi , P

′
Asi

)
]
, (A2)

where the last equation holds by the definition of KL-divergence and the last expectation is taken
with respect to Asi. Recall that

Ysi(Asi) = Asiµi +Ab
siξsi ∼ N(Asiµi, A

2b
si ).
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We have

KL(PAsi , P
′
Asi

) =
A2

si(µi − µ′
i)
2

2A2b
si

= A2−2b
si (µi − µ′

i)
2/2 = A2−2b

si KL(Pi, P
′
i ). (A3)

Recalling the definition of KL-divergence, we have

KL (Pv,Pv′) = Ev

[
log

pvπ(Ht)

pv′π(Ht)

]
=

K∑
i=1

Ev

[
t∑

s=1

A2−2b
si

]
KL(Pi, P

′
i ),

where the last equation holds by (A1), (A2), (A3).

Proof [of Theorem 1]: The proof basically follows from Theorem 15.2 in Lattimore and Szepesvári
(2020). The key difference is that the total allocated resource Sti is a continuous random variable.

Fix a policy π. Let ∆ be a constant to be chosen later. We consider the specific bandit instance
v ∈ P with mean vector µ = (∆, 0, . . . , 0). Let ST i :=

∑T
t=1Ati and i = argminj∈{2,...,K} Ev[STj ]

where Ev denotes the expectation under instance v. Since
∑K

j=1 Ev[STj ] = T , it holds that
Ev[ST i] ≤ T/(K − 1). We define the second bandit instance v′ ∈ P with µ′

j = µj for j ̸= i
and µ′

i = 2∆. So the arm i is the best for v′.
Now we choose A = {ST1 ≤ T/2}. Under event v, arm 1 is optimal, the regret has the lower

bound
Rπ(T, v) ≥

T

2
Pv(A)∆, (A4)

where Pv is the probability measure on the sample path induced by the T -round interconnection of
π and v. While under event v′, arm i is optimal, the regret is lower bounded by

Rπ(T, v
′) ≥ T

2
Pv′(A

c)∆. (A5)

Combining (A4) and (A5), we have

Rπ(T, v) +Rπ(T, v
′) ≥ T∆

2
(Pv(A) + Pv′(A

c)) ≥ T∆

4
exp (−KL(Pv,Pv′)) , (A6)

where the last inequality follows by Theorem 14.2 in Lattimore and Szepesvári (2020). By Lemma
12, we have

KL (Pv,Pv′) =
K∑
j=1

Ev

[
T∑
t=1

A2−2b
tj

]
KL(Pj , P

′
j) = Ev

[
T∑
t=1

A2−2b
ti

]
2∆2 = 2Ev[BT i]∆

2, (A7)

where BT i :=
∑T

t=1A
2−2b
ti .

For b ≤ 1/2, we have A2−2b
ti ≤ Ati. So Ev[BT i] ≤ Ev[ST i] ≤ T/(K − 1). According to (A6),

(A7), we have

Rπ(T, v) +Rπ(T, v
′) ≥ T∆

4
exp

(
−2Ev[BT i]∆

2
) (a)

≥ T∆

4
exp

(
−2∆2T/(K − 1)

)
(b)

≥ exp(−1/2)
8

√
T (K − 1) ≥ 2

27

√
T (K − 1), (A8)
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where (a) follows from BT i ≤ T/(K − 1), (b) follows from choosing ∆ =
√
(K − 1)/4T .

For b > 1/2, we have A2−2b
ti ≥ Ati and BT i ≥ ST i. Moreover, we have

1

T
BT i =

1

T

T∑
t=1

A2−2b
ti

(a)

≤

(
1

T

T∑
t=1

Ati

)2−2b

=

(
ST

T

)2−2b

,

where (a) follows from the concavity of the function f(x) = x2−2b and Jensen’s inequality. So

Ev[BT i] ≤ T 2b−1Ev[S
2−2b
T i ] ≤ T 2b−1

(
T

K − 1

)2−2b

=
T

(K − 1)2−2b
. (A9)

Combining (A6), (A7), (A9), we have

Rπ(T, v) +Rπ(T, v
′) ≥ T∆

4
exp

(
−2Ev[BT i]∆

2
) (a)

≥ T∆

4
exp

(
−2∆2T/(K − 1)2−2b

)
(b)

≥ exp(−1/2)
8

(K − 1)1−b
√
T ≥ 2

27
(K − 1)1−b

√
T , (A10)

where (a) holds by (A9), (b) holds by choosing ∆ = (K − 1)1−b/
√
4T . Since the bandit instance

can be chosen from v or v′, the minimax regret

Rπ(T ) ≥ max{Rπ(T, v), Rπ(T, v
′)} ≥ 1

2
(Rπ(T, v) +Rπ(T, v

′))

≥
{

1
27

√
(K − 1)T , for 0 ≤ b ≤ 1/2,

1
27(K − 1)1−b

√
T for 1/2 < b ≤ 1,

where the last inequality holds by summarizing (A8), (A10).

Proof [of Proposition 6]: We prove it in the following three steps.
Step one: to utilize the monotonic property of sequence a, we transform random variables

{ξs}ts=1 to {fs}ts=1 and transform the sequence a to a positive sequence b, where {fs}ts=1 and b
are defined as 

f1 := ξ1 + ξ2 + . . .+ ξt
f2 := ξ2 + . . .+ ξt

...
ft := ξt

,


b1 := a1
b2 := a2 − a1

...
bt := at − at−1

.

Thus, the numerator in (15) is

t∑
s=1

asξs = a1

t∑
s=1

ξs + (a2 − a1)

t∑
s=2

ξs + . . .+ (at − at−1)ξt =

t∑
s=1

bsfs.

Figure 2 illustrates the transformation. The summation
∑t

s=1 asξs is represented by the volume
of the shadow area, which can be counted in the columns (adding up in a) and the rows (adding

up in b). The denominator in (15) is
√∑t

s=1 a
2
s =

√∑t
s=1 (

∑s
i=1 bi)

2. Since a ∈ Am, we have
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Figure 2: Summation of sequence ξs and fs

b1 = a1 > 0, bs = as−as−1 ≥ 0 for s = {2, 3, . . . , t}. Thus, let B := {b1 > 0, b2 ≥ 0, . . . bt ≥ 0},
we have

sup
a∈Am

∑t
s=1 asξs√∑t

s=1 a
2
s

= sup
b∈B

∑t
s=1 bsfs√∑t

s=1 (
∑s

i=1 bi)
2
. (A11)

Step two: we give a high-probability upper bound ϵs for fs, where

ϵs :=
√
t− s+ 1ϵ, (A12)

and ϵ is a positive constant. If this holds, then we can easily show that With a high probability,∑t
s=1 bsfs ≤

∑t
s=1 bsϵs because b ⪰ 0.

Since fs =
∑t

i=s ξi is
√
t− s+ 1σ-sub-Gaussian, we have

P(fs ≥ ϵs) ≤ exp

(
− ϵ2s
2(t− s+ 1)σ2

)
= exp

(
− ϵ2

2σ2

)
. (A13)

Then, taking the union of events {fs ≥ ϵs}, we have

P
(
∪ts=1{fs ≥ ϵs}

)
≤

t∑
s=1

P(fs ≥ ϵs) ≤ t exp

(
− ϵ2

2σ2

)
.

We define the event
G = {∩ts=1{fs ≤ ϵs}}, (A14)

and obtain that

P(Gc) ≤ t exp

(
− ϵ2

2σ2

)
. (A15)

Note that under the event G, we always have fs ≤ ϵs for all s. For any realization of f1, f2, . . . , ft,
we have the corresponding vector b∗(f) ∈ B which maximizes (A11). Thus, under event G, we
have

sup
b∈B

∑t
s=1 bsfs√∑t

s=1 (
∑s

i=1 bi)
2
=

∑t
s=1 b

∗
sfs√∑t

s=1 (
∑s

i=1 b
∗
i )

2

(a)

≤
∑t

s=1 b
∗
sϵs√∑t

s=1 (
∑s

i=1 b
∗
i )

2
≤sup

b∈B

∑t
s=1 bsϵs√∑t

s=1 (
∑s

i=1 bi)
2
,

(A16)
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where (a) follows by b ⪰ 0. So we have

P

I

sup
b∈B

∑t
s=1 bsfs√∑t

s=1 (
∑s

i=1 bi)
2
≥
√

3

2
log tϵ

 ∩G


≤ P

I

sup
b∈B

∑t
s=1 bsϵs√∑t

s=1 (
∑s

i=1 bi)
2
≥
√

3

2
log t

 ϵ ∩G

 . (A17)

Step three: Note that there’s no randomness in (A16). We claim that

sup
b∈B

∑t
s=1 bsϵs√∑t

s=1 (
∑s

i=1 bi)
2
= sup

b∈B

∑t
s=1 bs

√
t− s+ 1ϵ√∑t

s=1 (
∑s

i=1 bi)
2

<

√
3

2
log tϵ. (A18)

If so, then (A17) = 0. In the following, we will prove a stronger version of (A18): for any b ∈ Rt,(
t∑

s=1

bs
√
t− s+ 1

)2

<
3

2
log(t)

t∑
s=1

(
s∑

i=1

bi

)2

. (A19)

It’s a purely algebraic problem to prove. We write (A19) in the matrix form:

bT
(
A− 3

2
log(t)B

)
b < 0 ⇔ A ≺ 3

2
log(t)B, (A20)

where

A =


t

√
t(t− 1)

√
t(t− 2) . . .

√
t√

t(t− 1) t− 1
√
(t− 1)(t− 2) . . .

√
t− 1√

t(t− 2)
√
(t− 1)(t− 2) t− 2 . . .

√
t− 2

...
...

... . . .
...√

t
√
t− 1

√
t− 2 . . . 1

 , (A21)

B =


t t− 1 t− 2 . . . 1

t− 1 t− 1 t− 2 . . . 1
t− 2 t− 2 t− 2 . . . 1

...
...

... . . .
...

1 1 1 . . . 1

 . (A22)

Note that A and B have the same diagonal elements. But the off-diagonal elements of A are all
greater than B. So A−B is not negative definite. We will show A− 3

2 log(t)B is negative definite.
Note that A is a rank-1 matrix:

A = λAV V ⊤, where λA =
t(t+ 1)

2
, V =

√
2

t(t+ 1)

(√
t
√
t− 1 · · · 1

)⊤
. (A23)
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Note that B is full-rank and positive definite:

B = DDT , where D = DT =



1 1 . . . 1 1
1 1 . . . 1 0
...

... . . .
...

...

1 1
... 0 0

1 0
... 0 0


, D−1 =



0 0 . . . 0 1
0 0 . . . 1 −1
0 0 . . . −1 0
...

...
...

...
...

0 1
... 0 0

1 −1 . . . 0 0


.

(A24)
We construct the following matrix

E :=

(
λ−1
A V T

V 3
2 log(t)B

)
.

By the property of Schur complement (Theorem 1.12 in Zhang (2006)), we have

3

2
log(t)B ≻ A = λAV V T ⇐⇒ E ≻ 0 ⇐⇒ λ−1

A > V T

(
3

2
log(t)B

)−1

V. (A25)

It remains to prove

(A25) ⇐⇒ 3

2
log(t) > λAV

⊤B−1V = λA(D
−1V )⊤D−1V = (

√
λAD

−1V )⊤
√
λAD

−1V.

(A26)
By (A23), (A24), we have

√
λAD

−1V =



0 0 . . . 0 1
0 0 . . . 1 −1
0 0 . . . −1 0
...

...
...

...
...

0 1
... 0 0

1 −1 . . . 0 0





√
t√

t− 1
...√
3√
2
1


=



1√
2− 1

...√
t− 2−

√
t− 3√

t− 1−
√
t− 2√

t−
√
t− 1


.

Thus, we have

(
√

λAD
−1V )⊤

√
λAD

−1V =

t∑
s=1

(√
s−
√
s− 1

)2
= 1 +

t∑
s=2

(
1

√
s+
√
s− 1

)2

(a)
< 1 +

t∑
s=2

(
1

2
√
s− 1

)2

= 1 +
1

4

t∑
s=2

1

s− 1
= 1 +

1

4

t−1∑
i=1

1

i

(b)

≤ 5

4
+

1

4

∫ t−1

1

1

x
dx ≤ 5

4
+

1

4
log t

(c)

≤ 3

2
log t,

where (a) follows by
√
s ≥
√
s− 1, (b) follows by 1/x decreasing in x, (c) follows by log t ≥ 1

for t ≥ 2. Thus, we have proved (A26), (A25), (A20), (A19) and (A18).
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In summary, we have

P

 sup
a∈Am

∑t
s=1 asξs√∑t

s=1 a
2
s

≥
√

3

2
log tϵ


(a)
= P

sup
b∈B

∑t
s=1 bsfs√∑t

s=1 (
∑s

i=1 bi)
2
≥
√

3

2
log tϵ


(b)

≤ P

I

sup
b∈B

∑t
s=1 bsϵs√∑t

s=1 (
∑s

i=1 bi)
2
≥
√

3

2
log tϵ

 ∩G

+ P(Gc)

(c)
= P(Gc)

(d)

≤ t exp

(
− ϵ2

2σ2

)
, (A27)

where (a) holds by (A11), (b) holds by (A17), (c) holds by (A18), (d) holds by (A15). Replacing ϵ
by
√
log tϵ, we have (15). Thus, we complete the proof of Proposition 6.

Proof [of Theorem 3]: We use the concentration inequality for µ̂(1)
ti . By (14) and (A27), we have

P

(∣∣∣∣(µ̂(1)
ti − µi)

√
R

(1)
ti

∣∣∣∣ ≥
√

3

2
log tϵ

)
≤ t exp

(
− ϵ2

2σ2

)
for any arm i ∈ [K], any period t ∈ [T ] and any possible value of µ̂(1)

ti , R(1)
ti generated by the

Algorithm 1. Let δ = T−4 and ϵ =
√
2σ2 log(1/δ). We have

P
(∣∣∣(µ̂(1)

ti − µi)

√
R

(1)
ti

∣∣∣ ≥ σ
√

3 log t log(1/δ)

)
≤ tδ. (A28)

Next, let Dt to denote the active set at the end of period t. We define the confidence interval and the
good events,

CI(t, i) = σ
√

3 log t log(1/δ)

/√
R

(1)
ti , ∀ i ∈ [K] (A29)

Gti∗ =
{
µi∗ ≤ UCB(t, i∗) := µ̂

(1)
ti∗ + CI(t, i∗)

}
, (A30)

Gti =
{
µi ≥ LCB(t, i) := µ̂

(1)
ti − CI(t, i)

}
, for i ∈ Dt/i

∗, (A31)

Gt = {∩i∈DtGti} , G =
{
∩Tt=1Gt

}
. (A32)

Under event Gti∗ , µi∗ is not much lower than µ̂
(1)
ti∗ . So the optimal arm will not be eliminated.

Under event Gti, µti is not much lower than µ̂
(1)
ti . So for those arms surviving for a long time, their

suboptimality gap ∆i will be small.
From (A28), we know that

P (Gc
ti∗) ≤ tδ, P (Gc

ti) ≤ tδ, P (Gc
t) ≤

∑
i∈Dt

P(Gc
ti) ≤ Ktδ, P(Gc) ≤

T∑
t=1

P (Gc
t) ≤ KTtδ.

(A33)
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According to the definition of regret (6), we have

Rπ(T ) = E

[
T∑
t=1

K∑
i=1

Ati(µi∗ − µi)

]
= E

[
T∑
t=1

K∑
i=1

Ati∆i

]
(a)
= E

[
T∑
t=1

K∑
i=1

Ati∆iI (τi ≥ t)

]

= E

[
T∑
t=1

K∑
i=1

Ati∆iI ((τi ≥ t) ∩Gc)

]
+ E

[
T∑
t=1

K∑
i=1

Ati∆iI ((τi ≥ t) ∩G)

]
, (A34)

where (a) holds by Ati = 0 if τi < t.
For the first term in (A34), we have

E

[
T∑
t=1

K∑
i=1

Ati∆iI ((τi ≥ t) ∩Gc)

]
≤ E

[
T∑
t=1

K∑
i=1

Ati∆maxI ((τi ≥ t) ∩Gc)

]
(a)
= ∆maxE

[
T∑
t=1

∑
i∈Dt

AtiI (Gc)

]

(b)
= ∆max

T∑
t=1

E

[
E

[∑
i∈Dt

Ati

∣∣∣Gc

]
I(Gc)

]

(c)
= ∆max

T∑
t=1

P(Gc)

(d)

≤ ∆maxT
3Kδ, (A35)

where ∆max = maxi{∆i}, (a) holds by i ∈ Dt ⇔ τi ≥ t, (b) holds by the tower rule of expecta-
tion, (c) holds by

∑
i∈Dt

Ati = 1, (d) holds by (A33).
For the second term in (A34), we have

E

[
T∑
t=1

K∑
i=1

Ati∆iI ((τi ≥ t) ∩G)

]
= E

[
K∑
i=1

T∑
t=1

∆iAtiI ((t ≤ τi) ∩G)

]

= E

[(
K∑
i=1

τi∑
t=1

∆iAti

)
I(G)

]
, (A36)

where the last equality holds because the argument of event G is about the entire sample path.
By (A30), (A31), (A32), we have under Gt,

UCB(t, i∗) ≥ µi∗ ≥ µi ≥ LCB(t, i),

for the optimal arm i∗ and suboptimal arm i ∈ Dt/i
∗. So the optimal arm i∗ will not be eliminated,

i.e., i∗ ∈ Dt. For those arms i ∈ Dt/{i∗}, since they are active, we have UCB(t, i) ≥ LCB(t, i∗).
That implies

µ̂
(1)
ti + CI(t, i) ≥ µ̂

(1)
ti∗ − CI(t, i∗). (A37)
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Then, we give an upper bound for the suboptimality gap:

∆i = µi∗−µi

(a)

≤ µ̂
(1)
ti∗−µ̂

(1)
ti +CI(t, i∗)+CI(t, i)

(b)

≤ 2(CI(t, i∗)+CI(t, i))
(c)
= 4CI(t, i), (A38)

where (a) follows from (A30), (A31), (b) follows from (A37), (c) follows from that if arm i and i∗

are active at period t, their allocation sequences Ai and Ai′ should be equal, so do sequences R(2)
i

and R
(2)
i′ .

Thus, when Gt happens, by (A38), we have ∆i ≤ 4CI(t, i). So the event Gt is a sub-
set of the event ∆i ≤ 4CI(t, i). Thus, I(Gt) ≤ I(∆i ≤ 4CI(t, i)) for any i ∈ [K]. Fur-
thermore, when G happens, we have ∆i ≤ 4CI(t, i) for any i ∈ [K] and any t ∈ [T ] and
I(G) ≤ I (∆i ≤ 4CI(t, i) ∀i, ∀t). So we have

(A36) ≤ E

[(
K∑
i=1

τi∑
t=1

∆iAti

)
I(∆i ≤ 4CI(t, i) ∀i, ∀t)

]
(a)

≤ E

[
K∑
i=1

τi∑
t=1

∆iAtiI(∆i ≤ 4CI(τi, i))

]
(b)

≤ 4E

[
K∑
i=1

τi∑
t=1

AtiCI(τi, i)

]
(c)
= 4E

[
K∑
i=1

Sτi,iCI(τi, i)

]
, (A39)

where (a) follows from picking up t = τi and omit the indicator I(∆i ≤ 4CI(t, i)) for other t, (b)
follows from replacing ∆i by 4CI(τi, i), (c) follows from Sτi,i =

∑τi
t=1Ati.

By (A29), we have

CI(τi, i) = σ
√
3 log τi log(1/δ)

/√
R

(2)
τi,i
≤ σ

√
3 log T log(1/δ)

√√√√ τi∑
s=1

A2b
si

/
Sτi,i, (A40)

where the second equation follows by τi ≤ T and the definition of R(1)
ti in (10). Thus, plugging

(A40) into (A39), we have

(A39) ≤ 4σ
√
3 log T log(1/δ)

K∑
i=1

√√√√ τi∑
s=1

A2b
si . (A41)

Note that the value of (A41) depends on the random stopping times τ . Lemma 9 gives an upper
bound for (A41) for any possible stopping times τ .

According to Lemma 9, we have

(A41) ≤ 2σ
√

6 log T log(1/δ)/(1− b)K1−b
√
T . (A42)

In summary, by (A34), (A35), (A42), the total regret can be upper bounded by

Rπ(T ) ≤ ∆maxT
3Kδ + 2σ

√
6 log T log(1/δ)/(1− b)K1−b

√
T

= ∆max + 4
√
6/(1− b)σ(log T )K1−b

√
T ,
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where setting δ = 1/T 4.

Proof [of Lemma 9] Without loss of generality, we let 1 ≤ τ1 ≤ τ2 ≤ · · · ≤ τK . By the definition
of Asi in (13), we have

K∑
i=1

√√√√ τi∑
s=1

A2b
si

=
√
τ1K−2b +

√
τ1K−2b + (τ2 − τ1)(K − 1)−2b (A43)

+
√
τ1K−2b + (τ2 − τ1)(K − 1)−2b + (τ3 − τ2)(K − 2)−2b + . . .

+
√
τ1K−2b + (τ2 − τ1)(K − 1)−2b + (τ3 − τ2)(K − 2)−2b + . . .+ (τK − τK−1)

=

K∑
i=1

√√√√ i∑
j=1

(τi − τi−1)(K − j + 1)−2b =
K∑
i=1

ci. (A44)

Let ci :=
√∑i

j=1(τi − τi−1)(K − j + 1)−2b, d2i = (K−i+1)2b−(K−i)2b. By Cauchy-Schwarz
inequality, we have

(
K∑
i=1

ci

)2

=

(
c1d1

1

d1
+ c2d2

1

d2
+ . . .+ cKdK

1

dK

)2

≤
(
c21d

2
1 + c22d

2
2 + . . .+ c2Kd2K

)( 1

d21
+ . . .+

1

d2K

)
. (A45)

It can be checked that

c21d
2
1 + c22d

2
2 + . . .+ c2Kd2K

= τ1K
−2bK2b + (τ2 − τ1)(K − 1)−2b(K − 1)2b + (τ3 − τ2)(K − 2)−2b(K − 2)2b + . . .

+ (τK − τK−1)τK ≤ T. (A46)

Plugging (A45) and (A46) into (A44), we have

(A44) ≤
√
T

√
1

d21
+ . . .+

1

d2K
=
√
T

√√√√ K∑
i=1

1

(K − i+ 1)2b − (K − i)2b
. (A47)
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Next, we have

K∑
i=1

1

(K − i+ 1)2b − (K − i)2b
=

K∑
x=1

1

x2b − (x− 1)2b

(a)

≤
∫ K

1

1

x2b − (x− 1)2b
dx+ 1

(b)

≤
∫ K

1
x1−2bdx+ 1

=
1

2− 2b

(
K2−2b − 1

)
+ 1

(c)

≤ 1

2− 2b
K2−2b, (A48)

where (a) follows by
1

x2b − (x− 1)2b
decreasing in x, (b) follows by

1

x2b − (x− 1)2b
≤ x1−2b for

x ≥ 1, (c) follows by 1− 1
2−2b ≤ 0 for 1/2 ≤ b ≤ 1.

Combining (A47) and (A48), we have

(A44) =
K∑
i=1

√√√√ τi∑
s=1

A2b
si ≤

√
1

2− 2b
K1−b

√
T .

Thus, we complete the proof of Lemma 9.

Appendix B. Proofs in Section 4

Proof [of Theorem 10] The proof basicly follows from Theorem 16.2 in Lattimore and Szepesvári
(2020). For a bandit instance v ∈ P , µi∗ is the mean of the optimal arm. Fix a suboptimal arm i
and let v′ ∈ P with µ′

j = µj for j ̸= i and µ′
i = µi∗ + ϵ where ϵ > 0 can be arbitrarily small. Thus,

the KL-divengence is KL(Pi, P
′
i ) = (∆i + ϵ)2/2. By Lemma 12, we have

KL (Pv,Pv′) =
K∑
j=1

Ev

[
T∑
t=1

A2−2b
tj

]
KL(Pj , P

′
j) = Ev

[
T∑
t=1

A2−2b
ti

]
(∆i + ϵ)2/2, (B49)

where the last equation follows from the definition of v′. Let ST i :=
∑T

t=1Ati, BT i :=
∑T

t=1A
2−2b
ti .

For b ≤ 1/2, we have A2−2b
ti ≤ Ati. So BT i ≤ ST i. By (B49), we have

KL (Pv,Pv′) = Ev [BT i] (∆i + ϵ)2/2 ≤ Ev [ST i] (∆i + ϵ)2/2. (B50)

By Theorem 14.2 in Lattimore and Szepesvári (2020), we have for any event A,

Pv(A) + Pv′(A
c) ≥ 1

2
exp (−KL (Pv,Pv′)) . (B51)

Now we choose A = {ST i > T/2}. Under event v, arm i is suboptimal, the regret has the lower
bound

Rπ(T, v) ≥
T

2
Pv(A)∆i. (B52)
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While under event v′, arm i is optimal, the regret is lower bounded by

Rπ(T, v
′) ≥ T

2
Pv′(A

c)(µ′
i − µi∗) =

T

2
Pv′(A

c)ϵ. (B53)

Combining (B52) and (B53), we have

Rπ(T, v) +Rπ(T, v
′) ≥ T

2
(Pv(A)∆i + Pv′(A

c)ϵ)

≥ T

4
min{∆i, ϵ} (Pv(A) + Pv′(A

c))

(a)

≥ T

4
min{∆i, ϵ} exp (−KL (Pv,Pv′))

(b)

≥ T

4
min{∆i, ϵ} exp

(
−Ev [ST i] (∆i + ϵ)2/2

)
, (B54)

where (a) follows from (B51), (b) follows from (B50). Rearranging (B54) and taking the limit
inferior leads to

lim inf
T→∞

Ev[ST i]

log T
≥ 2

(∆i + ϵ)2
lim inf
T→∞

log

(
T min{∆i, ϵ}

4(Rπ(T, v) +Rπ(T, v′))

)/
log T

=
2

(∆i + ϵ)2
lim inf
T→∞

(
1 +

log(min{∆i, ϵ}/4)
log T

− log(Rπ(T, v) +Rπ(T, v
′))

log T

)
=

2

(∆i + ϵ)2

(
1− lim sup

T→∞

log(Rπ(T, v) +Rπ(T, v
′))

log T

)
=

2

(∆i + ϵ)2
, (B55)

where the last equality follows from the definition of consistency, which says that for any p > 0
there exists a constant Cp such that for a sufficiently large T , Rπ(T, v)+Rπ(T, v

′) ≤ CpT
p, which

implies that

lim sup
T→∞

log(Rπ(T, v) +Rπ(T, v
′))

log T
≤ lim sup

T→∞

p log T + log(Cp)

log T
= p,

which gives the result since p > 0 can be arbitrarily small. Recalling the definition of regret, we
have

lim inf
T→∞

Rπ(T, v)

log T
= lim inf

T→∞

∑
i:∆i>0

∆iEv[ST i]

log T

(a)

≥
∑

i:∆i>0

2∆i

(∆i + ϵ)2
(b)
=

∑
i:∆i>0

2

∆i
,

where (a) holds by (B55), (b) holds by choosing arbitrarily small ϵ > 0.

Proof [of Theorem 11] Recall the definition of regret

Rπ(T, v) =
T∑
t=1

E

[
µi∗ −

K∑
i=1

Atiµi

]
= Tµi∗ −

K∑
i=1

E

[
T∑
t=1

Atiµi

]

= Tµi∗ −
K∑
i=1

E[ST iµi] =

K∑
i=1

E[ST i]∆i. (B56)
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By Algorithm 2, the resource allocated to arm i is either Ati or 1−KAti. So we have

E[ST i] =
1

K
+

T∑
t=2

Ati + (1−KAti)P
(
µ̂
(2)
ti ≥ µ̂

(2)
ti∗

)
≤ 1

K

(
1 +

T∑
t=1

t−α

)
+

T∑
t=2

P
(
µ̂
(2)
ti ≥ µ̂

(2)
ti∗

)
≤ 1

K

(
2 +

∫ T

t=1
t−αdt

)
+

T∑
t=2

P
(
µ̂
(2)
ti ≥ µ̂

(2)
ti∗

)
≤ 2α− 1

K(α− 1)
+

T∑
t=2

P
(
µ̂
(2)
ti ≥ µ̂

(2)
ti∗

)
. (B57)

At period t, we define the good events for arm i that Gti = {µ̂(2)
ti ∈ (µi−∆i/2, µi+∆i/2)}. Under

the event Gti ∩Gti∗ , we have

µ̂
(2)
ti < µi +∆/2 = µi∗ −∆/2 < µ̂

(2)
ti∗ .

Thus, we have

P
(
µ̂
(2)
ti ≥ µ̂

(2)
ti∗

) (a)

≤ P
((

µ̂
(2)
ti ≥ µ̂

(2)
ti∗

)
∩ (Gti ∩Gti∗)

)
+ P (Gc

ti ∪Gc
ti∗)

(b)

≤ P (Gc
ti) + P (Gc

ti∗) ,

(B58)
where (a) holds by probability decomposition and (b) holds by
P
((

µ̂
(2)
ti ≥ µ̂

(2)
ti∗

)
∩ (Gti ∩Gti∗)

)
= 0. The remaining is to show an upper bound for P (Gc

ti) for
any i ∈ [K]. We have

P (Gc
ti) ≤ P

(
µ̂
(2)
ti ≤ µi −∆i/2

)
+ P

(
µ̂
(2)
ti ≥ µi +∆i/2

)
= 2P

(
µ̂
(2)
ti − µi ≥ ∆i/2

)
. (B59)

Recalling the definition of µ̂(2)
ti in (8) and the choice of Ati in Algorithm 2, we have

µ̂
(2)
ti − µi =

1∑t
s=1 I(Asi > 0)

t∑
s=1

Ab−1
si ξsiI(Asi > 0) =

1

t

t∑
s=1

Ab−1
si ξsi. (B60)

Let ϵti = K−1t−α. Since
∑K

i=1 ϵsi ≤ 1 for any s ∈ [t], we have Asi ≥ ϵsi and Ab−1
si ≤

K1−bsα(1−b) for any i ∈ [K]. Since ξsi is σ-sub-Gaussian, by (B60), we have µ̂
(2)
ti − µi is

σ
tK

1−b
√∑t

s=1 s
2α(1−b)-sub-Gaussian. And

t∑
s=1

s2α(1−b) ≤
∫ t

s=1
s2α(1−b)ds+ t2α(1−b) =

t1+2α(1−b) − 1

1 + 2α(1− b)
+ t2α(1−b)

(a)

≤
(

t

1 + 2α(1− b)
+ 1

)
t2α(1−b)

(b)

≤ (t+ 1)t2α(1−b)

≤ 2t1+2α(1−b) ≤ 2t3−2b+ϵ,
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where (a) follows from −1 < 0 and (b) follows from 1 + α(2 − 2b) ≥ 1. So µ̂
(2)
ti − µi is

σK1−b
√
2t1−2b+ϵ-sub-Gaussian and

P
(
µ̂
(2)
ti − µi ≥ ∆i/2

)
≤ exp

(
− ∆2

i t
2b−1−ϵ

16σ2K2−2b

)
= exp (−atγ) , (B61)

where a := ∆2
i /(16σ

2K2−2b) > 0 and γ := 2b− 1− ϵ ∈ (0, 1).
Let m = ⌈1/γ⌉, we have

T∑
t=2

exp (−atγ)
(a)

≤
∫ ∞

t=1
exp (−atγ) dt (b)

=

∫ ∞

t=1
exp (−at) dt1/γ

(c)

≤
∫ ∞

t=1
exp (−at) dtm = m

∫ ∞

t=1
exp (−at) tm−1dt

= −m

a

∫ ∞

t=1
tm−1d exp (−at)

(d)
= −m

a

(
0− e−a −

∫ ∞

t=1
exp(−at)dtm−1

)
=

m

a

(
e−a +

∫ ∞

t=1
exp(−at)dtm−1

)
, (B62)

where (a) holds by the function exp(−atγ) decreasing in t, (b) holds by changing of variable t →
t1/γ , (c) follows from dt1/γ = (1/γ)t1/γ−1dt ≤ mtm−1dt = dtm, (d) follows from integration by
parts. Thus, we have reduced

∫∞
t=1 exp (−at) dt

m to
∫∞
t=1 exp (−at) dt

m−1. So on and so forth, we
have

(B62) =
m

a

(
e−a +

m− 1

a

(
e−a +

∫ ∞

t=1
exp(−at)dtm−2

))
(f)
=

(
m

a
+

m(m− 1)

a2
+ . . .+

m!

am

)
e−a

≤
(
m

a
+

m2

a2
+ . . .+

mm

am

)
e−a

(g)
=

m

a

(
(m/a)m − 1

m/a− 1

)
e−a

(h)

≤ m

a

(
(m/a)m − 1

m/a− 1

)
=

m

m− a
((m/a)m − 1) , (B63)

where (f) follows from
∫∞
t=1 exp(−at)dt = e−a, (g) follows from the summation for geometric

sequence, (h) follows from e−a < 1. If a ≤ m/2, then m/(m− a) ≤ 2 and (B63) ≤ 2(m/a)m. If
a ≥ m/2, then (B63) ≤ 2 + 22 + . . .+ 2m ≤ 2m+1. Thus, we have

(B63) ≤ 2(m/a)m + 2m+1. (B64)
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Combining all the inequalities, we have

Rπ(T, v)
(a)
=

K∑
i=1

E[ST i]∆i

(b)

≤ 2α− 1

K(α− 1)

K∑
i=1

∆i +

K∑
i=1

T∑
t=2

P
(
µ̂
(2)
ti ≥ µ̂

(1)
ti∗

)
∆i

(c)

≤ 2α− 1

K(α− 1)

K∑
i=1

∆i + 4

K∑
i=1

T∑
t=2

P
(
µ̂
(2)
ti − µi ≥ ∆i/2

)
∆i

(d)

≤ 2α− 1

K(α− 1)

K∑
i=1

∆i + 4
K∑
i=1

T∑
t=2

exp(−atγ)∆i

(e)

≤ 2α− 1

K(α− 1)

K∑
i=1

∆i + 4

K∑
i=1

m

m− a
((m/a)m − 1)∆i

(f)

≤ 2(1− b+ ϵ)

Kϵ

K∑
i=1

∆i + 8

K∑
i=1

((m/a)m + 2m)∆i

(g)
=

(
2(1−b+ϵ)

Kϵ
+2⌈1/(2b−1−ϵ)⌉+4

) K∑
i=1

∆i+8
K∑
i=1

(
16σ2K2−2b⌈1/(2b−1−ϵ)⌉

∆2
i

)⌈1/(2b−1−ϵ)⌉

∆i,

where (a) holds by (B56), (b) holds by (B57), (c) holds by (B58),(B59), (d) holds by (B61), (e)
holds by (B63), (f) hols by (B64) and α = 1 + ϵ/(2 − 2b), (g) holds by m = ⌈1/(2b − 1 − ϵ)⌉.
Thus, the proof of Theorem 11 is completed.
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